Skip to main content

Genetic Engineering of Cotton

  • Chapter
  • First Online:
Genetics and Genomics of Cotton

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 3))

Abstract

The words biotechnology, genetic engineering, molecular biology, and high throughput genomic analysis have engendered awe, doubtfulness, ambivalence, and hope from scientists and the public alike. The technologies justify the responses, for they are undoubtedly the most powerful biological research tools in existence today. They are not, however, new tools that have suddenly burst upon us. Rather, as with most new tools, the scientific community has been slowly developing them for decades. We must regard them as tools to address and solve real problems not as ends unto themselves. Genetic engineering of cotton has proven to be a very challenging undertaking but despite the challenges, Cotton has led the way for acceptance of genetically engineered crop plants and today the industry stands on a new threshold, with another new set of tools for understanding the cotton genome. It is with that foundation that we move forward today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, D.C., A.D.Banerjee, R.R. Kulala, A.B. Dhage, A.B., A.V. Kulkarni, M. Nalawade, S.L. Hazra, K.V. Krishnamurty, K.V. (1997). In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L). Plant Cell Reports 16(9) : 647–652

    Article  CAS  Google Scholar 

  • Allen, R.D. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Allen, R.D. and N.L. Trolinder (1995). Expression of superoxide dismutase in transgenic plants leads to increased stress tolerance. Prodeedings Beltwide cotton Conference, Vol. 2: 1136–1137. National Cotton Council, TN.

    Google Scholar 

  • Armstrong, Toni A., D. L. De Boer, (2004). Method for regeneration of cotton. U.S. patent application 20040087030

    Google Scholar 

  • Bajaj, Y.P.S, and M. S. Gill (1985). In vitro induction of genetic variability in cotton (Gossypium spp.). Theor. Appl. Genet. 70:363–368.

    Google Scholar 

  • Bajai, Y.P.S. and M.S. Gill (1986) Micropropagation and germplasm preservation of cotton (Gossypium spp.) through shoot tip and meristem culture. Ind. J. Exp. Bot 24:581–583.

    Google Scholar 

  • Barrow, J. R. (1986) The conditions required to isolate and maintain viable cotton (Gossypium hirsutum L.) microspores. Plant Cell Reports 5(6)

    Google Scholar 

  • Bayley, C.C.; Morgan, M.; Dale, E.C., Ow, D.W. 1992. Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Molecular Biology 18: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Bayliss, M.W. (1973) Origin of chromosome number variation in cultured plant cells. Nature 246: 529–530.

    Article  Google Scholar 

  • Beasley, C.A. (1971). In vitro culture of fertilized cotton ovules. Bioscience 21 906–907.

    Article  Google Scholar 

  • Beasley, C.A. and I.P. Ting (1973). The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Amer J. Bot 60:130–139.

    Article  CAS  Google Scholar 

  • Baszczynski, C. L., B.A. Bowen, D.J. Peterson, L. Tagliani (2008) Compositions and methods for the targeted insertion of a nucleotide sequence of interest into the genome of a plant. U.S. patent 7,361,508.

    Google Scholar 

  • Bowler, C., M. Van Montagu, D. Inze (1992). Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:83–116.

    Article  CAS  Google Scholar 

  • Burke, John J; M.J. Oliver, J.P. Velten (1998). Pollen based transformation system using solid media U. S. patent 5,929,300.

    Google Scholar 

  • Cao, Jing-Lin; X. Zhang, S.X. Jin, X.Y. Yang, H.G Zhu, L-L Fu, (2008). An efficient culture system for synchronization control of somatic embryogenesis in cotton (Gossypium hirsutum L). Acta Agronomica Sinica 34(2) 224–231.

    Google Scholar 

  • Carlson, S.R., G.W. Rudgers, H. Zieler, J.M. Mach, S Luo, E. Grunden, C. Krol, G.P. Copenhaver, D. Preuss (2007). Meiotic Transmission of an In Vitro- Assembled Autonomous Maize Minichromosome. PloS Genet 3(10): e 179. doi:10.1371/journal.pgen.0030179.

    Google Scholar 

  • Chen, Z. X., S. J. Li, J. X. Yue, G. L. Jiao, and S. X. Liu (1989). Plantlet regeneration from protoplasts isolated from an embryogenic suspension culture of cotton (Gossypium hirsutum L.). Acta Botanica Sinica 31,966–9.

    Google Scholar 

  • Chappell, J., and J.R. Mauney (1967). Culture of the apical meristem of Gossypium hirsutum in vitro. Phyton 24: 93–100.

    CAS  Google Scholar 

  • Chlan, C. A., J. Lin, J. W. Cary, and T. E. Cleveland, (1995). A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue. Plant Mol. Biol. Rep. 13, 31–7.

    Article  Google Scholar 

  • Chua, N.H., J. Zuo, S, G, Moller (2004). Inducible site specific recombination for the activation and removal of transgenes in transgenic plants. U.S. Patent 6,723,896.

    Google Scholar 

  • Cousins, Y. L., B. R. Lyon, and D. J. Llewellyn (1991). Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Aust. J. Plant Physiol. 18,481–94.

    Article  CAS  Google Scholar 

  • Davidonis, G. H., and R. H. Hamilton (1983). Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci. Lett. 32,89–93.

    Article  CAS  Google Scholar 

  • Davis, B. 2006. Genetically controlled herbicide resistance in cotton plants in the absence of genetic engineering. US Patent 7,074,987.

    Google Scholar 

  • Deaton, W.R. (1995). Managing for resistance to the Bollgard gene. IN: Proceedings of the Beltwide Cotton Conference, Vol 2: 758. National Cotton Council. Memphis, TN.

    Google Scholar 

  • Earley, K.W., J.R. Hang, O. Pontes, K. Opper, T. Juehne, F. Song, C.S. Pikaard (2006). Gateway compatible vectors for plant functional genomics & proteomics. The Plant Journal 45: 616–629.

    Article  PubMed  CAS  Google Scholar 

  • Finer, J. J. and Smith, R. H. 1984. Initiation of callus and somatic embryos from explants of mature cotton (Gossypium klotzschianum Anderss). Plant Cell Reports 3,41–43.

    Article  Google Scholar 

  • Finer, J., 1988. Plant regeneration from somatic embryogenic suspension cultures of cotton (Gossypium hirsutum L.). Plant Cell Rep. 7, 399–402.

    Article  Google Scholar 

  • Finer, J. J. and McMullen, M. D. 1990. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Reports 8,586–9.

    Article  Google Scholar 

  • Firoozabady, E. Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L (1993). In Vitro Cellular and Developmental Biology – Plant 29 (3).

    Google Scholar 

  • Firoozabady, E., Deboer, D., Merlo, D., Halk, E., Amerson, L., Rashka, K. and Murray, E. 1987. Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol. 10: 105–16.

    Article  CAS  Google Scholar 

  • Gapper, C. and L. Dolan (2006). Control of Plant Development by Reactive Oxygen Species. Plant Physiol. 141(2):341–345.

    Article  PubMed  CAS  Google Scholar 

  • Gawel, N. J. and Robacker, C. 1990. Genetic control of somatic embryogenesis in cotton petiole callus cultures. Euphytica 49,249–53.

    Google Scholar 

  • Golovkin, M.V., M. Abraham, S. Morocz, S., Bottka, A. Feher, and D. Dudits, (1993). Production of transgenic embryogenic plants by direct DNA uptake into maize protoplasts. Plant Sci. 90:41–52.

    Article  CAS  Google Scholar 

  • Gould, J., S. Banister, O. Hasegawa, M. Fahima, R.H. Smith, (1991). Regeneration of Gossypium hirsutum and G. barbadense from shoot apex tissues for transformation. Plant Cell Reports 10,12–6.

    Article  Google Scholar 

  • Green, A., S. Singh, Q. Liu, (2005). Method of modifying the content of cotton seed oil. U.S. patent 6,974,898.

    Google Scholar 

  • Hemphill, J.K., C. G. Maier, K.D. Chapman, (1998). Rapid in vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Rep. 17, 273–278.

    Article  CAS  Google Scholar 

  • Hodges, T.K., L.A. Lyznik (1999). Controlled modification of eukaryotic genomes. U.S. patent 5,910,415.

    Google Scholar 

  • Hood, E.E., S.B. Gelvin, L.S. Melchers, A. Hoekema (1993). New Agrobacterium helper plasmid for gene transfer to plants. Transgenic Res. 2: 208–218.

    Article  CAS  Google Scholar 

  • Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G. and Fraley, R. T.(1985). A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Huynh, T.T. (2001) Palmitol-Acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content. Dissertation. University of North Texas

    Google Scholar 

  • Huzera, S; A. V. Kulkarni, S. M. Naluwade, A.K. Bienerjee, D.C. Agrawal, K.V. Krishnamurty. (2006) Multiple shoot regeneration in cotton: Influence of explants, genotypes and culture vessels on sprouting and proliferation of pre-existing meristems of cotton (Gossypium hirsutum L and Gossypium Arboreum L). IVC and DB 36 (6) 505–510.

    Google Scholar 

  • Jiang, B. (2004). Optimization of Agrobacterium mediated cotton transformation using shoot apices explants and quantitative trait loci analysis of yield and yield component traits in upland cotton (Gossypium hirsutum L). A Dissertation. Louisiana State University.

    Google Scholar 

  • Jain, S.M.; B.S. Ahloorolia, D. S. Brar, (1998). Somaclonal variation and induced mutations in crop improvement. Ed. Kluwer Academic Press, The Netherlands.

    Google Scholar 

  • Jim, S., X. Zhang, Y. Nie, X. Guo, S. Liang, H. Zhu. (2006). Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum 50 (4)

    Google Scholar 

  • Kebede, D. Tripathy, S. Hwang, N. Trolinder, R. Wright (2007). Alternative respiration during cotton growth & development. International Cotton Research Conference 2007, Lubbock, Texas.

    Google Scholar 

  • Kim. J.K., B.A. Triplett (2001). Cotton fiber growth In Planta and In Vitro: Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R.M., E.D. Wolf, R. Wu., J.C. Sanford (1987). High-velocity micro-projectiles for delivering nucleic acids into living cells. Nature,327: 70–73.

    Article  CAS  Google Scholar 

  • Kornyeyev, D. B., A. Logan P., Payton, R. D. Allen, A. S. Holaday (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologia Plantarum 113: 323–331

    Article  PubMed  CAS  Google Scholar 

  • Koshinsky, H.A., H. K. Liao, D.W. Ow (1995). Progress in screening micro- organisms for gossypol degrading ability. Biochemistry of cotton (Proceedings of the biochemistry of cotton workshop) Galveston, TX. Cotton Incorporated pp 19-22.

    Google Scholar 

  • Kosegi, B. D, J.R. Beringer, A. Palta, A. Mehra, J.F..Petoline, R. Ram, (2007). Whisker-mediated transformation of embryogenic cotton suspension cultures. US PATENT 7,166,768.

    Google Scholar 

  • Kumar, S., P. Sharma, D. Pentel. A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars. (1998). Plant Cell Rep. 18: 59–63.

    Article  CAS  Google Scholar 

  • Kumar, S. , A. Dhingra, H. Daniell (2005). Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology 56: 203–216.

    Article  CAS  Google Scholar 

  • Kumria, R., V.G. Sunnichan, D.K. Das, S.K Gupta, V.S. Reddy, R.K Bhatnagar, S. Leelavathi (2003). High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep. 21:635–639.

    PubMed  CAS  Google Scholar 

  • Lennon, A.M. U.H.Neuenschwander, M. Ribas-Carbo, L. Giles, J.A. Ryals, J.N. Siedow (1997). The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol 115: 783–791.

    PubMed  CAS  Google Scholar 

  • Li, L., Y. Zhang, M. Wang, Y. Zhang, X. Wu, X. Guo. (2007). Molecular cloning and expression characteristics of alternative oxidase gene of cotton. Molecular Biology Reports: on line 1573-4928

    Google Scholar 

  • Li, R., D.M. Stelly and N.L. Trolinder (1989). Cytogenetic abnormalities in cotton (Gossypium hirsutum L.) cell cultures. Genome 32: 1128–1134.

    Article  Google Scholar 

  • Liu, Q. S.P. Singh, and A. G. Green (2002). High-Stearic and High-Oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Phys. 129: 1732–1743

    Article  CAS  Google Scholar 

  • Logan, B.A. G. Monteiro, D. Kornyeyev, P. Payton, R. D. Allen and A.S..Holaday (2003). Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions. American Journal of Botany ;90:1400–1403.

    Article  PubMed  Google Scholar 

  • Luo, J-H and Gould, J.H. (1999). In vitro shoot-tip grafting improves recovery of cotton plants from culture. Plant Cell Tissue and Organ Culture 57, 211–213.

    Article  Google Scholar 

  • Maxwell, D.P, Y. Wang, L. McIntosh (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, D. E. and Martinell, B. J. (1993). Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/technol. 11,596–8.

    Article  Google Scholar 

  • McKersie, B.D., Y. Chen, M deBeus, S.R. Bowley, C Bowler, D. Inze, K. D’Halluin, J. Botterman. (1993). Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sative L.). Plant Physiol. 103:1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Medberry, S.L., E. Dale, M. Qin, D. W. Ow. (1995). Intra-chromosomal rearrangements generated by Cre/lox site specific recombination. Nucleic Acids Research 23 -485–490.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, R., H-Y Wang, N. Yadav, and Wilkins, T.A. (2003). Development of highly regenerable elite Acala cotton (Gossypium hirsutum L.) A step towards genotype-independent regeneration. Plant Cell Tissue Organ Culture 73, 21–39.

    Article  CAS  Google Scholar 

  • Mogali, S.C., B.M. Khadi, I.S. Katageri (2007). Pollen tube pathway mediated genetic transformation studies in cotton (Gossypium hirsutum L.). International Cotton Research Conf., Lubbock, Texas.

    Google Scholar 

  • Oliver, M.J., J.E. Quisenberry, N.L. Trolinder, D.L. Keim (1998) Control of plant gene expression U.S. patent 7,723,765

    Google Scholar 

  • Oliver, M.J., J. E. Quisenberry, N.L. Trolinder, D. L. Keim (1999a). Control of Plant Gene Expression. U.S. Patent 5,979,441.

    Google Scholar 

  • Oliver, M.J., J.E. Quisenberry, N.L. Trolinder, D.L. Keim (1999b). Control of plant gene expression. U.S. patent 5,925,808

    Google Scholar 

  • Payton P., R. Webb, D. Kornyeyev, R. Allen, A. S. Holaday (2001). Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic anti-oxidant enzyme activity. Journal of Experimental Botany 52: 2345–2354

    Article  PubMed  CAS  Google Scholar 

  • Perlak, F. J., R. W. Deaton, T. A. Armstrong, T.A. Fuchs, T. S.R. Sims, J. T. Greenplate. and D.A. Fischoff .(1990). Insect resistant cotton plants. Bio/technol. 8,939–943.

    Article  CAS  Google Scholar 

  • Perlak, Fredrick J. (2001). Development and commercial use of Bollgard R cotton in the USA –

    Google Scholar 

  • Smith, R. H., H. J.Price, J.B.Thaxton(1977). Defined conditions for the initiation and growth of cotton callus in vitro. I. Gossypium arboreum. In Vitro 13(5): 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Price, H. J., R.H. Smith (1979). Somatic embryogenesis in suspension cultures of Gossypium klotzschianum Anderss. Planta 145,305–6.

    Article  CAS  Google Scholar 

  • Qin, M.; D. Baley, J. Stockston, D.W. Ow, (1994). Cre recombinase mediated site-specific recombination between plant chromosomes. Proceedings National Academy Science USA 91: 1706–1710.

    Article  CAS  Google Scholar 

  • Quma, J.P.; Young, M.M.; and Reichert, N.A. (2004). Rooting of in vitro regenerated cotton (Gossypium hirsutum L) is influenced by genotype, medium composition, explants type and age. African Journal of Biotechnology 3 (6): 313–318.

    Google Scholar 

  • Rajasekaran, K., Grula, J. W., Hudspeth, R. L., Pofelis, S. and D. M. Anderson, (1996). Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol. Breeding 2: 307–19.

    Article  CAS  Google Scholar 

  • Rangan, T. S.; D. M. Anderson, M. David (1998). Method for producing somaclonal variant cotton plants. U.S. Patent 5,834,292

    Google Scholar 

  • Rangan, T. S. D.M. Anderson, K. Rajasekaran (1999). Cotton somaclonal variants with increased resistance to fungal pathogens; U.S Patent 5,859,321.

    Google Scholar 

  • Rangan, T. S., K. Rajasekaen (1997). Regeneration of cotton plants in suspension culture. U.S. patent 5,695,999.

    Google Scholar 

  • Rangan, T.S. and T. Zavala (1984) . Somatic embryogenesis in tissue culture of Gossypium hirsutum L.). In Vitro 20: 256.

    Google Scholar 

  • Rangan, T. S., D. M. Anderson, K. Rajasekaran, J.W. Grula, R. L. Hudspeth, R. L. Yenofsky, (2003). Transformation of cotton plants. U.S. Patent 6,724,344.

    Google Scholar 

  • Reddy, N.S., J.Y. Zhu, J.Y. Rong, T.X. Hong (2004) Pollen tube pathway mediated genetic transformation of cotton. P 356-360. In “ Strategies for sustainable cotton production – a global vision” Proc. Intern. Symp., 23-25 Nov. 2004, UAS, DWR, KRK.

    Google Scholar 

  • Reichert, N. A. T. Lim, M. Young, (2002). Method for transformation of cotton and organogenic regeneration. U.S. Patent 6,479,287.

    Google Scholar 

  • Reynaerts, A. , A. De Sonville (2002). Method for Agrobacterium mediated transformation of cotton . U.S. Patent 6,483,013.

    Google Scholar 

  • Shang, X. M., N. Trolinder (1991). Buffer Capacity of cotton cells and effects of extracellular pH on growth and somatic embryogenesis in cotton cell suspensions. In Vitro Cellular and Developmental Biology – Plant 27 (3): 147–152.

    Google Scholar 

  • Shoemaker, R.C., L.J. Couche, and D.W. Galbraith (1986). Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.) Plant Cell Reports 3: 178–181.

    Article  Google Scholar 

  • Song X. , Y. Gu * , G. Qin 2007 Application of a transformation method via the pollen-tube pathway in agriculture molecular breeding. Life Science Journal;4(1):77–79 J

    CAS  Google Scholar 

  • Stalker, D.M., J.A. Kiser, G. Baldwin, B. Coulombe, C.M. Houck (1996). Cotton weed control using the BXN system. In: Herbicide-resistant crops: agricultural, environmental, economic, regulatory, and technical Aspects, pp 93–105. Duke, S.O. Ed., Lewis Publishers, New York.

    Google Scholar 

  • Stelly, D.M., D. W. Altman, R.J. Kohel, T.S. Rangan, and E. Commiskey (1989). Cyatogenetic abnormalities of cotton somaclones from callus cultures. Genome 32, 762–770.

    Article  Google Scholar 

  • Stewart, J. Mc.D, C.L. Hsu (1977). In ovulo embryo culture and seedling development of cotton (Gossypium hirsutum L.,). Planta 137:113–117.

    Article  CAS  Google Scholar 

  • Stipanovic, R.D., A. Stossel, J.B Stothers, D.W. Altman, A.A. Bell, P Heinstein (1986). The stereochemistry of the biosynthetic precursor of gossypol. J Chem Soc Chem Comm 2: 100–102.

    Article  Google Scholar 

  • Stipanovic, R.D., A.A. Bell, M.J. Lukefahr (1977) Natural insecticides from cotton (Gossypium). In PA Hedin, ed, Host Plant Resistance to Pests, Vol 62. American Chemical Society Symposium Series, Washington, DC, 197–214.

    Chapter  Google Scholar 

  • Strickland, S.G. (1998) Cotton transformation. U.S. Patent 5,846,797.

    Google Scholar 

  • Sun, Y. X. Zhang, C. Huang, ; Y. Nie, X. Guo (2005). Plant regeneration via somatic embryogenesis from protoplasts of six explants in Coker 201 (Gossypium hirsutum) Plant Cell Tissue and Organ Culture 82 (3): 309–315

    Article  CAS  Google Scholar 

  • Sun, Y. (2006). Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium species). Plant Cell Reports 25 (4).

    Google Scholar 

  • Sunilkumar, G., L.M. Campbell, L. Puckhaber, R.D. Stipanovic, and K.S. Rathore (2006). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. PNAS 103(480): 18054–18059.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. C., D. G. Adams, V. D. Keppene, C.C. Wasmann, J. K. Brown, M. R. Kanost, H.J. Bohnert (1995). Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep. 14:758–62.

    Article  CAS  Google Scholar 

  • Townsend, B.J., A. Poole, C.J. Blake, D.J. Llewellyn (2005). Anti-sense Suppression of a (+) - &- Cadinene Synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol. 138:516–528.

    Article  PubMed  CAS  Google Scholar 

  • Trolinder, N. L .(1985). Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). A Dissertation in Biology (Dec., 1985) Texas Tech Univ.

    Google Scholar 

  • Trolinder, N. L. (1987) . Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Reports 8,133–6.

    Article  Google Scholar 

  • Trolinder, N. L. and J. R. Goodin, (1987). Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports 6: 231–4.

    Article  CAS  Google Scholar 

  • Trolinder N. L., J.D.Berlin, Goodin JR (1987) Differentiation of cotton fibers from single cells in suspension culture. In Vitro Cell Develop Biol 23:789–794

    Article  Google Scholar 

  • Trolinder, N. L.. J. R. Goodin (1988a). Somatic embryogenesis and regeneration in cotton. I. Effects of source of explant and hormone regime. Plant Cell Tissue Organ Culture 12: 31–42.

    Google Scholar 

  • Trolinder, N. L., J. R. Goodin (1988b). Somatic embryogenesis and regeneration in cotton. II. Requirements for embryo development and plant regeneration. Plant Cell Tissue Organ Culture 12: 43–53

    Google Scholar 

  • Trolinder, N. L., X. Shang (1991). In vitro selection and regeneration of cotton resistant to high temperature stress. Plant Cell Reports Vol 10 (9): 448–452..

    Article  Google Scholar 

  • Trolinder, N.L., J. G Dever, and L. Koonce (1999a) Transformation and regeneration of fertile cotton plants. U.S. Patent 5,986,181.

    Google Scholar 

  • Trolinder, N.L. (1999b) In planta method for production of transgenic plants. U.S. Patent 5,994,624.

    Google Scholar 

  • Trolinder, N.L., T.A. Wilkins (2002). Creation of a gene knockout population of cotton, International Cotton Research Inititive Workshop, Nanjing, China S561.

    Google Scholar 

  • Trolinder, L., J. Gwyn, M. Debeuckeleer (2004). Herbicide tolerant plants having event EE-GH1. U.S. Patent 6,818,807.

    Google Scholar 

  • Trolinder, N. L.; L.K. Koonce. J.K Dever. (2006). Methods for producing transgenic cotton plants using chilled apical shoot tips. US Patent 7,122,722.

    Google Scholar 

  • Tuli, R.; A. K. Srivastana, S. K. Gupta, (2001). Tissue Culture process for producing a large number of viable cotton plants in vitro. U.S. Patent 6,242,257

    Google Scholar 

  • Ulian, E.C., R.H. Smith, J.H. Gould, and T. D. McKnight. (1988). Transformation of plants via the shoot apex. In Vitro Cell & Devel. Bio. 24:951–954.

    Article  Google Scholar 

  • Umbeck, P. F. (1991). Genetic engineering of cotton plants and lines. US Patent No. 5,004,863.

    Google Scholar 

  • Umbeck, P. F. (1992). Genetic engineering of cotton plants and lines. US Patent No. 5,159,135

    Google Scholar 

  • Umbeck, P. F, Johnson, G., Barton, K. and Swain, W. (1987). Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/technol. 5,263–6.

    Article  CAS  Google Scholar 

  • Van Haaren, M. J.J.; Ow, D.W. (1993). Prospects of applying a combination of DNA transposition and site specific recombination in plants. Plant Molecular Biology 23: 525–533.

    Article  PubMed  Google Scholar 

  • Veech, J.A., R.D. Stipanovic, A.A. Bell (1976). Peroxidative conversion of hemigossypol to gossypol: a revised structure for isohemigossypol. J Chem Soc Chem Comm: 144–145

    Google Scholar 

  • Wagner, A.M., A.L. Moore (1997) Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep 17:319–333.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., X., Z. Ma, G. Zhang, G. Han. (2006). Somatic embryogenesis and plant regeneration from two recalcitrant genotypes of Gossypium hirsutum L Chinas Agricultural Science 05.

    Google Scholar 

  • Wilkins, T. A., R. Mishra, and N.L. Trolinder (2004). Agrobacterium-mediated transformation and regeneration of cotton. Food, Agriculture & Environ 2(1):179–187.

    Google Scholar 

  • Willems, K, R. Swennen (2006). Protoplast to plant regeneration in cotton (Gossypium hirsutum L cv Coker 312) using feeder layers. Plant Cell Reports 13(3–4) 208–211.

    Google Scholar 

  • Yan, J., C. He, J. Wang, Z. Mao, S.A. Holaday, R. D. Allen and H. Zhang. (2004). Overexpression of the Arabidopsis 14–3-3 Protein GF14 in Cotton Leads to a “Stay-Green” Phenotype and Improves Stress Tolerance under Moderate Drought Conditions. Plant and Cell Physiology 45(8):1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, F.;, X. Zhang, L. Zhu, X. Guo, Y. Nie (2006). Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Molecular Biology Vol 60(2) 167–183.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H., E. Boudreau, S. Rouse, E. Dunder, W.. Gu, Y. Chang, (2005). Methods for stable transformation of plants. U. S. patent 6,858,777.

    Google Scholar 

  • Zhang, B. R. Feng, F. Lin, Q. Wang, (2001). High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot. Bull Acad Sin 42: 9–16.

    Google Scholar 

  • Zhou, G.-Y., Weng, J., Zeng, Y.-S., Huang, J.-G., Qian, S.-Y. and Liu, G.-L. 1983. Introduction of exogenous DNA into cotton embryos. Methods in Enzymology 101,433–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Trolinder, N.L. (2009). Genetic Engineering of Cotton. In: Paterson, A.H. (eds) Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70810-2_8

Download citation

Publish with us

Policies and ethics