Skip to main content

Designing, Building and Installing a Stereotactic Radiosurgery Unit

  • Chapter
Principles and Practice of Stereotactic Radiosurgery
  • 1631 Accesses

Abstract

The first stereotactic radiosurgery (SRS) unit was designed by Swedish neurosurgeon Dr. Lars Leksell in the 1950s [1]. The term stereotactic literally means “spatially fixed.” In general, a SRS procedure involves delivering a single fraction of high-dose radiation, usually with the guidance of a rigid fixation device (i.e., a stereotactic frame). The purpose of the frame is to map out the coordinate system of the target for accurate reference of the radiation beams [2]–[6]. Common types of radiation used for SRS are high-energy gamma rays (e.g., 60Co), high-energy x-rays, and charged particles such as protons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leksell L. The stereotaxic method and radiosurgery of the brain, Acta Chir Scand 1951; 102(4):316–9.

    CAS  PubMed  Google Scholar 

  2. Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004; 363(9422):1665–1672.

    Article  PubMed  Google Scholar 

  3. Corn BW, Curran WJ Jr, Shrieve DC, et al. Stereotactic radiosurgery and radiotherapy: new developments and new directions. Semin Oncol 1997; 24(6):707–714.

    CAS  PubMed  Google Scholar 

  4. Schell MC, Bova FJ, Larson DA, et al. Stereotactic Radiosurgery, Report of the American Association of Physicists in Medicine Task Group No. 42. College Park: American Institute of Physics, 1995.

    Google Scholar 

  5. Phillips MH, Stelzer KJ, Griffin TW, et al. Stereotactic radiosurgery: a review and comparison of methods. J Clin Oncol 1994; 12(5):1085–1099.

    CAS  PubMed  Google Scholar 

  6. Loeffler JS, Shrieve DC, Wen PY, et al. Radiosurgery for intracranial malignancies. Semin Radiat Oncol 1995; 5(3):225–234.

    Article  PubMed  Google Scholar 

  7. Harsh GR, Thornton AF, Chapman PH, et al. Proton beam stereotactic radiosurgery of vestibular schwannomas. Int J Radiat Oncol Biol Phys 2002; 54(1):35–44.

    PubMed  Google Scholar 

  8. Larsson B, Leksell L, Rexed B, et al. The high-energy proton beam as a neurosurgical tool. Nature 1958; 182(4644):1222–1223.

    Article  CAS  PubMed  Google Scholar 

  9. Larsson B, Sarby B. Equipment for radiation surgery using narrow 185 MeV proton beams. Dosimetry and design. Acta Oncol 1987; 26(2):143–158.

    Article  CAS  PubMed  Google Scholar 

  10. Lawrence JH, Tobias CA, Linfoot JA, et al. Heavy particles and the Bragg peak in therapy. Ann Intern Med 1965; 62:400–407.

    CAS  PubMed  Google Scholar 

  11. Levy RP, Fabrikant JI, Frankel KA, et al. Heavy-charged-particle radiosurgery of the pituitary gland: clinical results of 840 patients. Stereotact Funct Neurosurg 1991; 57(1–2):22–35.

    Article  CAS  PubMed  Google Scholar 

  12. Weber DC, Chan AW, Bussiere MR, et al. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery 2003; 53(3):577–586; discussion 586–588.

    Article  PubMed  Google Scholar 

  13. McGinley PH, Butker EK, Crocker IR, et al. A patient rotator for stereotactic radiosurgery. Phys Med Biol 1990; 35(5):649–657.

    Article  CAS  PubMed  Google Scholar 

  14. Leksell DG. Stereotactic radiosurgery. Present status and future trends. Neurol Res 1987; 9(2):60–68.

    CAS  PubMed  Google Scholar 

  15. Lindquist C. Gamma Knife radiosurgery. Semin Radiat Oncol 1995; 5:197–202.

    Article  PubMed  Google Scholar 

  16. Maitz AH, Wu A, Lunsford LD, et al. Quality assurance for gamma knife stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1995; 32(5):1465–1471.

    CAS  PubMed  Google Scholar 

  17. Wu A, Lindner G, Maitz H, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiati Oncol Biol Phys 1990; 18:941–949.

    Article  CAS  Google Scholar 

  18. Bourland JD, McCollough KP. Static field conformal stereotactic radiosurgery: physical techniques. Int J Radiat Oncol Biol Phys 1994; 28(2):471–479.

    CAS  PubMed  Google Scholar 

  19. Bova FJ, Friedman WA, Mendenhall WM. Stereotactic radiosurgery. Med Prog Technol 1992; 18(4):239–251.

    PubMed  Google Scholar 

  20. Colombo F, Benedetti A, Pozza F, et al. Stereotactic radiosurgery utilizing a linear accelerator. Appl Neurophysiol 1985; 48(1–6):133–145.

    CAS  PubMed  Google Scholar 

  21. Falco T, Lachaine M, Poffenbarger B, et al. Setup verification in linac-based radiosurgery. Med Phys 1999; 26(9):1972–1978.

    Article  CAS  PubMed  Google Scholar 

  22. Friedman WA, Bova FJ, Spiegelmann R. Linear accelerator radiosurgery at the University of Florida. Neurosurg Clin N Am 1992; 3(1):141–166.

    CAS  PubMed  Google Scholar 

  23. Leavitt DD, Watson G, Tobler M, et al. Intensity-modulated radiosurgery/radiotherapy using a micromultileaf collimator. Med Dosim 2001; 26(2):143–150.

    Article  CAS  PubMed  Google Scholar 

  24. Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988; 14(2):373–381.

    CAS  PubMed  Google Scholar 

  25. Nedzi LA, Kooy HM, Alexander E 3rd, et al. Dynamic field shaping for stereotactic radiosurgery: a modeling study. Int J Radiat Oncol Biol Phys 1993; 25(5):859–869.

    CAS  PubMed  Google Scholar 

  26. Podgorsak EB, Olivier A, Pla M, J. Hazel, et al. Physical aspects of dynamic stereotactic radiosurgery. Appl Neurophysiol 1987; 50(1–6):263–268.

    CAS  PubMed  Google Scholar 

  27. Podgorsak EB, Olivier A, Pla M, et al. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1988; 14(1):115–126.

    CAS  PubMed  Google Scholar 

  28. Solberg TD, Boedeker KL, Fogg R, et al. Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys 2001; 49(5):1481–1491.

    CAS  PubMed  Google Scholar 

  29. Winston KR, Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 1988; 22(3):454–464.

    Article  CAS  PubMed  Google Scholar 

  30. Colombo F, Francescon P, Cora S, et al. A simple method to verify in vivo the accuracy of target coordinates in linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 1998; 41(4):951–954.

    CAS  PubMed  Google Scholar 

  31. Gibbs FA Jr, Buechler D, Leavitt DD, et al. Measurement of mechanical accuracy of isocenter in conventional linear-accelerator-based radiosurgery. Int J Radiat Oncol Biol Phys 1993; 25(1):117–122.

    PubMed  Google Scholar 

  32. Boyer AL, Antonuk L, Fenster A, et al. A review of electronic portal imaging devices (EPIDs). Med Phys 1992; 19(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  33. Leavitt DD, Gibbs FA Jr, Heilbrun MP. Dynamic field shaping to optimize stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1991; 21(5):1247–1255.

    CAS  PubMed  Google Scholar 

  34. Pedroso AG, De Salles AA, Tajik K. Novalis shaped beam radiosurgery of arteriovenous malformations. J Neurosurg 2004; 101(Suppl 3):425–434.

    PubMed  Google Scholar 

  35. Smith ZA, De Salles AA, Frighetto L. Dedicated linear accelerator radiosurgery for the treatment of trigeminal neuralgia. J Neurosurg 2003; 99(3):511–516.

    Article  PubMed  Google Scholar 

  36. Rahimian J, Chen JC, Rao AA. Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia. J Neurosurg 2004; 101(Suppl 3):351–355.

    PubMed  Google Scholar 

  37. Adler JR, Murphy MJ, Chang SD, et al. Image-guided robotic radiosurgery. Neurosurgery 1999; 44:299–306.

    Google Scholar 

  38. Murphy MJ, Cox RS. Dose localization accuracy for an image-guided frameless radiosurgery system. Med Phys 1996; 23(12):2043–2049.

    Article  CAS  PubMed  Google Scholar 

  39. Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgery system. Neurosurgery 2003; 52:140–147.

    Article  PubMed  Google Scholar 

  40. Mackie TR, Balog J, Ruchala K, et al. Tomotherapy. Semin Radiat Oncol 1999; 9(1):108–117.

    Article  CAS  PubMed  Google Scholar 

  41. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993; 20(6):1709–1719.

    Article  CAS  PubMed  Google Scholar 

  42. Berk HW, Larner JM, Spaulding C, et al. Extracranial absorbed doses with Gamma Knife radiosurgery. Stereotact Funct Neurosurg 1993; 61(Suppl 1):164–172.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ma, L., Murphy, M. (2008). Designing, Building and Installing a Stereotactic Radiosurgery Unit. In: Chin, L.S., Regine, W.F. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71070-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71070-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-71069-3

  • Online ISBN: 978-0-387-71070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics