Skip to main content

Endothelial Cell Activation

  • Chapter
Angiogenesis

The initiation of the angiogenic cascade from a pre-existent vascular network requires the selective departure of individual endothelial cells from differentiated capillaries. The process entails the activation of specific signaling pathways that enable endothelial cells to exit their vessel of origin, invade the underlying stroma and initiate a new vascular sprout. Two major signaling pathways: VEGF and Notch, coordinate this process to select a subset of leading endothelial cells, referred to as tip cells. These cells display long filopodia and are highly migratory, but remain linked to their followers, the stalk cells. The stalk cells constitute the body of the sprout and proliferate in response to VEGF increasing the length of the incipient capillary. It is the coordination of Notch and VEGF signaling that regulates the extent to which cells become leaders (tip cells) and which become followers (stalk cells). Activation of Notch represses the tip cell in favor of the stalk cell phenotype, in part, by regulating the levels of VEGFR2. The resolution of the endothelial activation phase requires synthesis and organization of the basement membrane and the recruitment of pericytes and smooth muscle cells. This chapter focuses on the molecular regulation of these signaling pathways, and it contrasts our current understanding of endothelial cell activation in development and in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rossant J, Howard L. Signaling pathways in vascular development. Annu Rev Cell Dev Biol 2002; 18:541–573.

    PubMed  CAS  Google Scholar 

  2. Iruela-Arispe. Vascular Development and Angiogenesis. In: Encyclopedia of Molecular Cell Biology. Ed: Robert A. Meyers 2005; 15:201–232.

    Google Scholar 

  3. Achen MG, Stacker SA. The vascular endothelial growth factor family; proteins which guide the development of the vasculature. Int J Exp Pathol, 1998; 79(5):255–265.

    PubMed  CAS  Google Scholar 

  4. Matsumoto T, Claesson-Welsh L. VEGF Receptor Signal Transduction. Sci. STKE 2001; 112: 1223–1245.

    Google Scholar 

  5. Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996; 380:439–442.

    PubMed  CAS  Google Scholar 

  6. Carmeliet P, Ferreira V, Breier G et al. A.bnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996 380:435–439.

    PubMed  CAS  Google Scholar 

  7. Fong GH, Rossant J, Gertsenstein M et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376:66–70.

    PubMed  CAS  Google Scholar 

  8. Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376:62–66.

    PubMed  CAS  Google Scholar 

  9. Lamalice L, Houle F, Huot J. Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem. 2006; 281(45): 34009–34020.

    PubMed  CAS  Google Scholar 

  10. Lamalice L, Houle F, Jourdan G et al. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 2004; 23(2): 434–445.

    PubMed  CAS  Google Scholar 

  11. Rousseau S, Houle F, Huot J. Integrating the VEGF Signals Leading to Actin-Based Motility in Vascular Endothelial Cells. Trends Cardiovasc Med. 2000; 10(8):321–327.

    PubMed  CAS  Google Scholar 

  12. Rousseau S, Houle F, Landry J et al. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997; 15(18):2169–2177.

    PubMed  CAS  Google Scholar 

  13. Sakurai Y, Ohgimoto K, Kataoka Y et al. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci USA 2005; 102(4): 1076–1081.

    PubMed  CAS  Google Scholar 

  14. McMullen M, Keller R, Sussman M et al. Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene 2004; 23(6): 1275–1282.

    PubMed  CAS  Google Scholar 

  15. Meyer RD, Dayanir V, Majnoun F et al. The Presence of a Single Tyrosine Residue at the Carboxyl Domain of Vascular Endothelial Growth Factor Receptor-2/FLK-1 Regulates Its Autophosphorylation and Activation of Signaling Molecules. J Biol Chem 2002; 277(30): 27081–27087.

    PubMed  CAS  Google Scholar 

  16. Holmqvist K, Cross MJ, Rolny C et al. The Adaptor Protein Shb Binds to Tyrosine 1175 in Vascular Endothelial Growth Factor (VEGF) Receptor-2 and Regulates VEGF-dependent Cellular Migration. J Biol Chem 2004; 279(21): 22267–22275.

    PubMed  CAS  Google Scholar 

  17. Gerhardt H, Betsholtz C. How do endothelial cells orientate? EXS. 2005; 94:3–15.

    PubMed  Google Scholar 

  18. Gerhardt H, Golding M, Fruttiger M et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161(6):1163–1177.

    PubMed  CAS  Google Scholar 

  19. Fruttiger M. Development of the retinal vasculature. Angiogenesis. 2007;10:77–88.

    PubMed  Google Scholar 

  20. West H, Richardson WD, Fruttiger M. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development. 2005; 132:1855–1862.

    PubMed  CAS  Google Scholar 

  21. Chow J, Ogunshola O, Fan SY, et al. Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Res Dev Brain Res. 2001 Sep 23;130(1):123–132.

    PubMed  CAS  Google Scholar 

  22. Tischer E, Mitchell R, Hartman T et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991; 266(18):11947–11954.

    PubMed  CAS  Google Scholar 

  23. Ruhrberg C, Gerhardt H, Golding M, et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 2002; 16:2684–2698.

    PubMed  CAS  Google Scholar 

  24. Lee S, Jilani SM, Nikolova GV, et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005; 169:681–691.

    PubMed  CAS  Google Scholar 

  25. Van der Akker NM, Molin DG, Peters PP, et al. Tetralogy of fallot and alterations in vascular endothelial growth factor-A signaling and notch signaling in mouse embryos solely expressing the VEGF120 isoform. Circ Res. 2007; 100:842–849.

    PubMed  Google Scholar 

  26. Suchting S, Bicknell R and Eichmann A. Neuronal clues to vascular guidance. Exp Cell Res. 2006; 312: 668–675.

    PubMed  CAS  Google Scholar 

  27. Alva JA, Iruela-Arispe ML. Notch signaling in vascular morphogenesis. Curr Opin Hematol. 2004; 11(4):278–283.

    PubMed  CAS  Google Scholar 

  28. Gridley T. Notch signaling in vascular development and physiology. Development. 2007; 134:2709–2718.

    PubMed  CAS  Google Scholar 

  29. Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels: who is talking to whom about what? Circ Res. 2007; 100: 1556–1568.

    PubMed  CAS  Google Scholar 

  30. Gale NW, Dominguez MG, Noguera I et al. Haploinsuficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. PNAS 2004; 101:15949–954.

    PubMed  CAS  Google Scholar 

  31. Duarte A, Hirashima M, Benedito R et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004; 18:2474–2478.

    PubMed  CAS  Google Scholar 

  32. Hellström M, Phng L-K, Hofmann JJ et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 2007; 15:776–780.

    Google Scholar 

  33. Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA. 2007; 104: 3225–3230.

    PubMed  CAS  Google Scholar 

  34. Noguera-Troise I, Daly C, Papadopoulos NJ et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444:1032–1037.

    PubMed  CAS  Google Scholar 

  35. Ridgway J, Zhang G, Wu Y et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006; 444:1083–1087.

    PubMed  CAS  Google Scholar 

  36. Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007; 445:781–784.

    PubMed  CAS  Google Scholar 

  37. Lobov IB, Renard AA, Papadopoulos N, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 2007; 104: 3219–3224.

    PubMed  CAS  Google Scholar 

  38. Claxton S, Fruttiger M. Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns. 2004; 5:123–127.

    PubMed  CAS  Google Scholar 

  39. Hofmann JJ, Iruela-Arispe ML. Notch expression patterns in the retina: An eye on receptor–ligand distribution during angiogenesis. Gene Expr Patterns 2007; 7:461–467.

    PubMed  CAS  Google Scholar 

  40. Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development 1995; 121:1533–1545.

    PubMed  CAS  Google Scholar 

  41. Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. PNAS 2001; 98:5643–5648.

    PubMed  CAS  Google Scholar 

  42. Tsunematsu R, Nakayama K, Oike Y et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 2004; 279:9417–9423.

    PubMed  CAS  Google Scholar 

  43. Eichmann A, Makinen T, Alitalo K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev. 2005; 19:1013–1021.

    PubMed  CAS  Google Scholar 

  44. Klagsbrun M, Eichmann A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 2005; 16:535–548.

    PubMed  CAS  Google Scholar 

  45. Weinstein BM. Vessels and nerves: marching to the same tune. Cell. 2005; 120:299–302.

    PubMed  CAS  Google Scholar 

  46. Bagri A, Tessier-Lavigne M. Neuropilins as Semaphorin receptors: in vivo functions in neuronal cell migration and axon guidance. Adv Exp Med Biol. 2002; 515:13–31.

    PubMed  CAS  Google Scholar 

  47. Gu C, Yoshida Y, Livet J, et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 2005; 307:265–268.

    PubMed  CAS  Google Scholar 

  48. Song H, Ming G, He Z, et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 1998; 281:1515–1518.

    PubMed  CAS  Google Scholar 

  49. de Castro F, Hu L, Drabkin H, et al. Chedotal, Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins, J Neurosci. 1999; 19: 4428–4436.

    PubMed  Google Scholar 

  50. Wong JT, Wong ST, O’Connor TP. Ectopic semaphorin-1a functions as an attractive guidance cue for developing peripheral neurons. Nat Neurosci. 1999; 2:798–803.

    PubMed  CAS  Google Scholar 

  51. Bagnard D, Lohrum M, Uziel D, et al. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 1998; 125: 5043–5053.

    PubMed  CAS  Google Scholar 

  52. Toyofuku T, Kikutani H. Semaphorin signaling during cardiac development. Adv Exp Med Biol. 2007; 600:109–117.

    PubMed  Google Scholar 

  53. Kawasaki Y, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation, Development 1999; 126:4895–4902.

    PubMed  CAS  Google Scholar 

  54. Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor, Cell 1998; 92:735–745.

    PubMed  CAS  Google Scholar 

  55. Gu C, Rodriguez E.R., Reimert DV, et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development, Dev Cell 2003; 5:45–57.

    PubMed  CAS  Google Scholar 

  56. Miao HQ, Soker S, Feiner L, et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165, J Cell Biol. 1999; 146:233–242.

    PubMed  CAS  Google Scholar 

  57. Gagnon ML, Bielenberg DR, GechtmanZ, et al. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: in vivo expression and antitumor activity, Proc Natl Acad Sci USA. 2000: 97:2573–2578.

    PubMed  CAS  Google Scholar 

  58. Torres-Vazquez J, Gitler AD, Fraser SD, et al. Semaphorin–plexin signaling guides patterning of the developing vasculature, Dev Cell 2004; 7:117–123.

    PubMed  CAS  Google Scholar 

  59. Chisholm A, Tessier-Lavigne M. Conservation and divergence of axon guidance mechanisms, Curr Opin Neurobiol. 1999; 9: 603–615.

    PubMed  CAS  Google Scholar 

  60. Kennedy TE. Cellular mechanisms of netrin function: long-range and short-range actions, Biochem. Cell Biol. 2000; 78: 569–575.

    PubMed  CAS  Google Scholar 

  61. Lu X, Le Noble F, Yuan L, et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 2004; 432:179–186.

    PubMed  CAS  Google Scholar 

  62. Serafini T, Colamarino SA, Leonardo ED, et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system, Cell 1996; 87:1001–1014.

    PubMed  CAS  Google Scholar 

  63. Park KW, Crouse D, Lee M, et al. The axonal attractant Netrin-1 is an angiogenic factor, Proc Natl Acad Sci USA. 2004; 101:16210–16215.

    PubMed  CAS  Google Scholar 

  64. Brose K, Bland KS, Wang KH, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 1999; 96:795–806.

    PubMed  CAS  Google Scholar 

  65. Stein E, Tessier-Lavigne M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex, Science 2001; 291:1928–1938.

    PubMed  CAS  Google Scholar 

  66. Huminiecki L, Gorn M, Suchting S, et al. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis, Genomics 2002; 79:547–552.

    PubMed  CAS  Google Scholar 

  67. Park KW, Morrison M, Sorensen LK, et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration, Dev Biol. 2003; 261:251–267.

    PubMed  CAS  Google Scholar 

  68. Suchting, S, Heal P, Tahtis K, et al. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration, FASEB J. 2005; 19:121–123.

    PubMed  CAS  Google Scholar 

  69. Bedell VM,. Yeo SY, Park KW, et al. Roundabout4 is essential for angiogenesis in vivo, Proc Natl Acad Sci.USA. 2005; 102:6373–6378.

    PubMed  CAS  Google Scholar 

  70. Kamei M, Saunders WB, Bayless KJ, et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 2006;442:453–446.

    PubMed  CAS  Google Scholar 

  71. Ellis LM. Angiogenesis and its role in colorectal tumor and metastasis formation. Semin Oncol. 2004; 31:3–9.

    PubMed  CAS  Google Scholar 

  72. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005; 15:102–111.

    PubMed  CAS  Google Scholar 

  73. Bussolati B, Deambrosis I, Russo S et al. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J, 2003; 17:1159–1161.

    PubMed  CAS  Google Scholar 

  74. Neufeld G, Kessler O. Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer Metastasis Rev. 2006; 25: 373–385.

    PubMed  CAS  Google Scholar 

  75. Gruber M, Simon MC. Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr Opin Hematol. 2006; 13:169–174.

    PubMed  CAS  Google Scholar 

  76. Pradeep CR, Sunila ES, Kuttan G. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Integr Cancer Ther. 2005; 4:315–321.

    PubMed  CAS  Google Scholar 

  77. Sasano H, Suzuki T. Pathological evaluation of angiogenesis in human tumor. Biomed Pharmacother. 2005; 59 Suppl 2:S334–336.

    PubMed  CAS  Google Scholar 

  78. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med. 2002; 196:1497–1506.

    PubMed  CAS  Google Scholar 

  79. Nagy JA, Vasile E, Feng D, et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol. 2002; 67:227–237.

    PubMed  CAS  Google Scholar 

  80. Genis L, Galvez BG, Gonzalo P, Arroyo AG. MT1-MMP: universal or particular player in angiogenesis? Cancer Metastasis Rev. 2006; 25:77–86.

    PubMed  Google Scholar 

  81. van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol. 2006; 26:716–728.

    PubMed  Google Scholar 

  82. Roy R, Zhang B, Moses MA. Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res. 2006; 312: 608–622.

    PubMed  CAS  Google Scholar 

  83. Ferrara N, Hillan KJ, Gerber HP et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004; 3:391–400.

    PubMed  CAS  Google Scholar 

  84. Kaipainen K, Kreuter M, Kim CC, et al. Semaphorin 3 F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype, J. Clin Invest. 2004; 114:1260–1271.

    PubMed  Google Scholar 

  85. Kessler O, Shraga-Heled N, Lange T, et al. Semaphorin-3 F is an inhibitor of tumor angiogenesis, Cancer Res. 2004; 64: 1008–1015.

    PubMed  CAS  Google Scholar 

  86. Scehnet JS, Jiang W, Kumar SR, et al. Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood. 2004; 109: 4753–4760.

    Google Scholar 

  87. Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer. 2007; 7:327–331.

    PubMed  CAS  Google Scholar 

  88. Gimbrone MA Jr, Nagel T, Topper JN. Perspectives Series: Cell Adhesion in Vascular Biology- Biomechanical Activation: an Emerging Paradigm in Endothelial Adhesion Biology. J Clin Invest. 1997; 99(8):1809–1813.

    PubMed  CAS  Google Scholar 

  89. Heil M, Schaper W. Insights into pathways of arteriogenesis. Curr Pharm Biotechnol. 2007; 8(1): 35–42.

    PubMed  CAS  Google Scholar 

  90. Heil M, Schaper, W. Cellular mechanisms of arteriogenesis, in Clauss M, Breier G. (eds): Mechanisms of Angiogenesis. Basel: Birkhauser; 2005: 181–191.

    Google Scholar 

  91. le Noble F, Fleury V, Pries A et al. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res. 2005; 65:619–628.

    PubMed  Google Scholar 

  92. Davies PF, Barbee KA, Volin MV et al. Spatial Relationships in Early Signaling Events of Flow-Mediated Endothelial Mechanotransduction. Annu Rev Physiol. 1997; 59:527–549.

    PubMed  CAS  Google Scholar 

  93. Peirce SM, Skalak TC. Microvascular Remodeling: A Complex Continuum Spanning Angiogenesis to Arteriogenesis. Microcirculation 2003; 10:99–111.

    PubMed  Google Scholar 

  94. Resnick N, Yahav H, Shay-Salit A et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003; 81(3):177–199.

    PubMed  Google Scholar 

  95. Ito WD, Arras M, Scholz D et al. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol Heart Circ Physiol 1997; 273:H1255–1265.

    CAS  Google Scholar 

  96. Skalak TC, Price RJ. The role of mechanical stresses in microvascular remodeling. Microcirculation. 1996; 3:143–165.

    PubMed  CAS  Google Scholar 

  97. Wei-Jun C, Elisabeth K, Xiaoqiong W et al. Remodeling of the vascular tunica media is essential for development of collateral vessels in the canine heart. Mol Cell Biochem 2004; 264:201–210.

    Google Scholar 

  98. Arras M, Ito WD, Scholz D et al. Monocyte Activation in Angiogenesis and Collateral Growth in the Rabbit Hindlimb. J Clin Invest. 1998; 1:40–50.

    Google Scholar 

  99. Heil M, Ziegelhoeffer T, Pipp F et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002; 283:H2411–2419.

    PubMed  CAS  Google Scholar 

  100. Ito WD, Arras M, Winkler B et al. Monocyte Chemotactic Protein-1 Increases Collateral and Peripheral Conductance After Femoral Artery Occlusion. Circ Res. 1997; 80:829–37.

    PubMed  CAS  Google Scholar 

  101. Kusch A, Tkachuk S, Lutter S et al. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model. Biol Chem. 2002; 383(1):217–221.

    PubMed  CAS  Google Scholar 

  102. Schaper J, König R, Franz D et al. The endothelial surface of growing coronary collateral arteries. Intimal margination and diapedesis of monocytes. Virchows Archiv. 1976; 370(3):193–205.

    CAS  Google Scholar 

  103. Barakat AI. Responsiveness of vascular endothelium to shear stress: Potential role of ion channels and cellular cytoskeleton. Intl J of Mol Med 1999; 4:323–332.

    CAS  Google Scholar 

  104. Ingber DE. Cellular Basis of Mechanotransduction. Biol Bull. 1998; 194:323–327.

    PubMed  CAS  Google Scholar 

  105. Topper JN, Gimbrone MA Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today. 1999; 5:40–46.

    PubMed  CAS  Google Scholar 

  106. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005; 7:452–464.

    PubMed  CAS  Google Scholar 

  107. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005; 97:512–523.

    PubMed  CAS  Google Scholar 

  108. Davis GE, Saunders WB. Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc. 2006; 11: 44–56.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Iruela-Arispe, M.L. (2008). Endothelial Cell Activation. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics