Skip to main content

Challenges of Antiangiogenic Therapy of Tumors

  • Chapter
Angiogenesis

After the approval of the first antiangiogenic agent, bevacizumab, in February 2004, a humanized monoclonal antibody anti-vascular endothelial growth factor (VEGF), this category of new anticancer drugs expanded rapidly. At the end of 2006, the U.S. Food and Drug Administration (FDA) approved bevacizumab for therapy of advanced colorectal and non-small cell lung cancers (except squamous cell histotype), sunitinib for advancedrefractory renal cancer and for imatinib-resistant gastro- intestinal stromal tumors (GISTs), and sorafenib for recurrent advanced kidney cancer. Twelve antiangiogenic drugs entered Phase III trials and at least another 15-20 are under evaluation in Phase I-II studies. Such a rapid clinical development of inhibitors of angiogenesis with different pharmacodynamic and pharmacokinetic characteristics opens a number of challenges, including: the identification of targets of choice; the optimal therapeutic strategy; the rational selection of the patients; proper study-design of clinical trials as well as the monitoring of drug efficacy; management of toxicity; and, finally, the determination of the disease stage to obtain the best benefit. All the above relevant issues are presented and discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J. Tumor angiogenesis: Therapeutic implications. New Engl J Med 1971; 285; 1182–6.

    PubMed  CAS  Google Scholar 

  2. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005:438; 932–36.

    Article  PubMed  CAS  Google Scholar 

  3. Varmus H. The New Era in Cancer Research. Science 2006; 312; 1162–65.

    Article  PubMed  CAS  Google Scholar 

  4. Kerbel R, and Folkman J. Clinical translation of angiogenesis inhibitors. Nature Rev Cancer 2002; 2; 727–39.

    Article  CAS  Google Scholar 

  5. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000; 289; 1197–202.

    Article  PubMed  CAS  Google Scholar 

  6. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin : a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79; 315–28.

    Article  PubMed  Google Scholar 

  7. O’Reilly MS, Holmgren L, Shing Y, et al. Endostatin : an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88; 277–85.

    Article  PubMed  Google Scholar 

  8. O’Reilly MS, Pirie-Sphephered S, Lane WS, et al. Antiangiogenic activity of the cleaved conformation of the sepin antithrombin. Science 1999; 285; 1926–8.

    Article  PubMed  Google Scholar 

  9. Satchi-Fainaro R, Mamluk R, Wang L, et al. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 2005; 7; 251–61.

    Article  PubMed  CAS  Google Scholar 

  10. Wickstrom SA, Alitalo K, Keski-Oja J. Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phasphatase-dependent pathway in human endothelial cells. Cancer Res; 2002; 62; 5580–89.

    PubMed  CAS  Google Scholar 

  11. Sudhakar A, Sugimoto H, Yang C, et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Prooc Natl Acad Sci USA.; 2003; 100; 4766–4771.

    Article  CAS  Google Scholar 

  12. Yu Y, Moulton KS, Khan MK, et al. E-selectin is required for the antiangiogenic activity of endostatin. Prooc Natl Acad Sci USA.; 2004; 101; 8005–10.

    Article  CAS  Google Scholar 

  13. Nyberg P, Heikkila P, orsa T, et al. Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease-2, -9, and–13. J Biol Chem; 2003; 278: 22404–22411.

    Article  PubMed  CAS  Google Scholar 

  14. Almog N, Henke V, Flores L, et al. Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J. 2006; 20: 1–10.

    Article  CAS  Google Scholar 

  15. Naumov GN, Bender E, Zurakowski D, et al. A model of human tumor dormancy : an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 2006; 98: 316–25.

    PubMed  Google Scholar 

  16. Sun Y, Wang J, Liu Y, et al. Results of phase III trial of rh-endostatin (YH-16) in advanced non-small cell lung cancer (NSCLC) patients. J Clin Oncol 2005; 23.

    Google Scholar 

  17. Hoekstra R, de Vos F.Y.F.L., Eskens F.A.L.M., et al. Phase I safety, pharmacodynamic study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced cancer. J Clin Oncol 2005; 23: 5188–97.

    Article  PubMed  CAS  Google Scholar 

  18. Hoekstra R, de Vos FYFL, Eskens FALM, et al. Phase I study of the thrombospondin-1-minetic angiogenesis inhibitor ABT-510 with 5-fluoruracil and leucovorin : A safe combination. Eur J Cancer 2006; 42 : 467–72.

    Article  PubMed  CAS  Google Scholar 

  19. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275; 964–7.

    Article  PubMed  CAS  Google Scholar 

  20. Bagley RG, Weber W, Rouleau C, et al. Pericytes and endothelial precursor cells : cellular interactions and contributions to malignancy. Cancer Res 2005; 65 (21); 9741–50.

    Article  CAS  Google Scholar 

  21. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003; 112; 1142–51.

    PubMed  CAS  Google Scholar 

  22. Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculatur and stroma. Cytokine Growth Factors Rev 2004; 15; 275–86.

    Article  CAS  Google Scholar 

  23. Song S, Ewald AJ, Stallcup W, et al. PDGFR b+ perivascular progenitor cells in tumours regulate pericyte differentiaion and vascular survival. Nature Cell Biol 2005; 7; 870–9.

    Article  PubMed  CAS  Google Scholar 

  24. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007; 356 (2): 115–24.

    Article  PubMed  CAS  Google Scholar 

  25. Bergers G, Song S, Meyer-Morse, et al. Benefits of targeting both pericytes and endothelial cells in tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111; 1287–95.

    PubMed  CAS  Google Scholar 

  26. Ferrara N, Houck K, Jakeman L, et al. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992; 13; 18–32.

    PubMed  CAS  Google Scholar 

  27. Carmeliet P, and Jain RK Angiogenesis in cancer and other diseases Nature; 2000; 407; 249–57.

    Article  PubMed  CAS  Google Scholar 

  28. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20; 4368–4380.

    Article  PubMed  CAS  Google Scholar 

  29. Rafii S, et al. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002; 2; 826–35.

    Article  PubMed  CAS  Google Scholar 

  30. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307; 58–62.

    Article  PubMed  CAS  Google Scholar 

  31. Jain RK, Duda DG, Clark JW, et al. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clin Pract Oncol 2006; 3 (1); 24–40.

    Article  CAS  Google Scholar 

  32. Cooke R. Dr. Folkman’s War: Angiogenesis and the struggle to defeat cancer. Random House 2001.

    Google Scholar 

  33. Genentech Inc. Avastin tm (bevacizumab): prescribing information (online). Available from URL: http://www.gene.com (Accessed 2005 Nov 1).

  34. European Medicines Agency. Avastin 25 mg/mL: summary of product characteristics (online). Available from URL: http://www.roche.com/med-cor-2005–04-19 (Accessed 2005 Nov 1).

  35. Pouyssegur J, Dayan F, and Mature NM. Hypoxia signaling in cancer and approaches to enforce tumour regression. Nature 2006; 441: 437–43.

    Article  PubMed  CAS  Google Scholar 

  36. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Critical Rev Oncol Hematol 2006; 59: 15–26.

    Article  Google Scholar 

  37. Wang GL, and Semenza GL. Purification and characteriation of hypoxia-inducible factor 1. J Biol Chem 1995; 270; 1230–37.

    Article  PubMed  CAS  Google Scholar 

  38. Guertin DA, and Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005; 11: 353–61.

    Article  PubMed  CAS  Google Scholar 

  39. Nobukini T, and Thomas G. The mTOR/S6K signalling pathway : the role of of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb. Novartis Found Symp 2004; 262: 148–54. Discussion 154–9, 265–8.

    Article  PubMed  CAS  Google Scholar 

  40. Shook D, and Keller R. Mechanisms, mechanics and function of epithelial-mesenchimal transitions in early developmnt. Mech Dev 2003; 120: 1351–83.

    Article  PubMed  CAS  Google Scholar 

  41. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchimal transiion during tumor progression. Curr Opin Cell Biol 2005; 17: 548–88.

    Article  PubMed  CAS  Google Scholar 

  42. Thiery JP. Epithelial-mesenchimal transitions in tumour progression. Nature Rev Cancer 2002; 2: 442–54.

    Article  CAS  Google Scholar 

  43. Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci USA; 1986; 83; 6489–93.

    Article  PubMed  CAS  Google Scholar 

  44. Boccaccio C, and Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nature Rev Cancer 2006; 6; 637–45.

    Article  CAS  Google Scholar 

  45. Michieli P, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 2004; &; 61–73.

    Google Scholar 

  46. Mazzone M, et al. An uncleavable form of pro-scatter factor suppresses umor growth and dissemination in mice. J Clin Invest 2004; 114; 1418–32.

    PubMed  CAS  Google Scholar 

  47. Garber K. New drugs target hypoxia response in tumors. J Natl Cancer Inst 2005; 97(15); 1112–14.

    PubMed  Google Scholar 

  48. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nature Rev Cancer 2006; 6; 521–34.

    Article  CAS  Google Scholar 

  49. Oliveira CJR, et al. Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulaing protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radic Biol Med 2003; 35; 381–96.

    Article  PubMed  CAS  Google Scholar 

  50. Kawasaki K, et al. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol 2003; 23; 5726–37.

    Article  PubMed  CAS  Google Scholar 

  51. Zaragoza C, et al. Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP–cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Mol Pharmacol 2002; 62; 927–35.

    Article  PubMed  CAS  Google Scholar 

  52. Ridnour LA, et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA 2005; 102; 13147–52.

    Article  PubMed  CAS  Google Scholar 

  53. Fukumura D, Jain RK. Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev 1998; 17; 77–89.

    Article  PubMed  CAS  Google Scholar 

  54. Kubes P. Nitric oxide affects microvascular permeability in the intact and inflamed vasculature. Microcirculation 1995; 2; 235–44.

    Article  PubMed  CAS  Google Scholar 

  55. Gratton JP, et al. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 2003; 4; 31–39.

    Article  PubMed  CAS  Google Scholar 

  56. Park SW, et al. The effect of nitric oxide on cyclooxygenase-2 (COX-2) overexpression in head and neck cancer cell lines. Int J Cancer 2003; 107; 729–38.

    Article  PubMed  CAS  Google Scholar 

  57. Kim SF, Huri DA, Synder SH. Inducible nitric oxide synthase binds, S-nytrosylates, and activates cyclooxygenase-2. Science 2005; 310; 1966–70.

    Article  PubMed  CAS  Google Scholar 

  58. Rao CV, et al. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxigenase-2 inhibitor. Cancer Res 2002; 62; 165–70.

    PubMed  CAS  Google Scholar 

  59. Dillman RO. Monoclonal antibodies for treating cancer. Ann Intern Med 1989; 11; 592–603.

    Google Scholar 

  60. James K. Human monoclonal antibodies and engineered antibodies in the management of cancer. Cancer Biol 1990; 1; 243–53.

    CAS  Google Scholar 

  61. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nature 2006; 6; 714–25.

    CAS  Google Scholar 

  62. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluoruracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–42.

    Article  PubMed  CAS  Google Scholar 

  63. Hicklin D, t al. Antitumor activity of anti-flk-1 monolonal antibodies. Proc Am Assoc Cancer Res 1997; 38; 266 (Abstr 1788).

    Google Scholar 

  64. Baselga J. targeting tyrosine kinases in cancer: the second wave. Science 2006; 312; 1175–78.

    Article  PubMed  CAS  Google Scholar 

  65. Arora A, and Scholar EM: Role of tyrosine kinase in cancer therapy. J Pharmacol Exp Ther 2005; 315; 971–79.

    Article  PubMed  CAS  Google Scholar 

  66. Krause DS, and Van Ettern RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med; 2005; 353; 172–8.

    Article  PubMed  CAS  Google Scholar 

  67. Kuenen BC, Rosen L, Smit EF, et al. Dose finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol 2002; 20; 1657–67.

    Article  PubMed  CAS  Google Scholar 

  68. Heinrich MC, Maki RG, Corless CL, et al. Sunitinib (SU) response in imatinib-resistant (IM-R) GIST correlates with KIT abd PDGFRA mutation status. J Clin Oncol 2006; 24 (Abstr 9502).

    Google Scholar 

  69. Wedge SR, Ogilvie DJ, Duks M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002; 62 (16); 4645–55.

    PubMed  CAS  Google Scholar 

  70. Mross K, et al. Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer 2005; 41; 1291–99.

    Article  PubMed  CAS  Google Scholar 

  71. Hecht JR, et al. A randomized, double-bind, placebo-controlled phase III study in patients with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluoruracil/leucovorin and PTK787/ZK222584 or placebo. J Clin Oncol 2005;(Abstr 23); LBA3.

    Google Scholar 

  72. Folkman J. Antiangiogenesis in cancer therapy-endostatin and its mechanims of action. Exp Cell Res 2006; 312: 594–607.

    Article  PubMed  CAS  Google Scholar 

  73. Hedrick E, Kozloff M, Hainsworth J, et al. Safety of bevacizumab plus chemotherapy as first-line treatment of patients with metastatic colorectal cancer: Updated results from a large observational registry in the USA (BRiTE).Citation: J Clinical Oncol 2006; Proc Am Soc Clin Oncol 24 (18S) (Supplement) Abstr 3536.

    Google Scholar 

  74. Kamba T, Tam BYY, Hashizume H, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 2006; 290:H560–76.

    Article  PubMed  CAS  Google Scholar 

  75. Clark JW, et al. Safety and pharmacokinetics of the dual action of raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 2005; 11: 5472–80.

    Article  PubMed  CAS  Google Scholar 

  76. Moore M, et al. Phase I study to determine the safety and pharmacokinetic of the novel Raf kinase and VEGFR inhibitor BAY 43–9006, administered for 28 days on/days off in patients with advanced, refractory solid tumors. Ann Oncol 2005; 16: 1688–94.

    Article  PubMed  CAS  Google Scholar 

  77. Gasparini G, Longo R, Toi M, et al. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol 2005; 2(11): 562–77.

    Article  PubMed  CAS  Google Scholar 

  78. George ML, Eccles SA, Tutton MG, et al. Correlation of plasma and serum vascular endothelial growth factor levels with platelet count in colorectal cancer: clinical evidence of platelet scavenging? Clin Cancer Res 2000; 6:3147–3152.

    PubMed  CAS  Google Scholar 

  79. Davidoff AM, Ng CY, Zhang Y, et al, Careful decoy receptor titering is required to inhibit tumor angiogenesis while avoiding adversely altering VEGF bioavailability. Mol Ther 2005; 11: 300–10.

    Article  PubMed  CAS  Google Scholar 

  80. Uthoff SM, Duchrow M, Schmidt MH, et al. VEGF isoforms and mutations in human colorectal cancer. Int J Cancer 2002;101: 32–6.

    Article  PubMed  CAS  Google Scholar 

  81. Yan L, Borregaard N, Kjeldsen L, et al. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). J Biol Chem 2001; 276 (40): 37258–65.

    Article  PubMed  CAS  Google Scholar 

  82. Roy R, Wewer UM, Zurakowsky D, et al. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 2004; 279 (49): 51323–330.

    Article  PubMed  CAS  Google Scholar 

  83. Beaudry P, Force J, Naumov GN, et al. Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as a surrogate marker of antiangiogenic activity. Clin Cancer Res 2005; 11: 3514–22.

    Article  PubMed  CAS  Google Scholar 

  84. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med 2004; 10: 145–47.

    Article  PubMed  CAS  Google Scholar 

  85. Willet CG, Boucher Y, Duda DG, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 2005; 23: 8136–9.

    Article  Google Scholar 

  86. Mancuso P, Colleoni M, Calleri A, et al. Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 2006; 108: 452–9.

    Article  PubMed  CAS  Google Scholar 

  87. Beerepoot LV, Radema SA, Witteveen EO, et al. Phase I clinical evaluation of weekly administration of the novel vascular-targeting agent, ZD6126, in patients with solid tumors. J Clin Oncol 2006; 24: 1491–8.

    Article  PubMed  CAS  Google Scholar 

  88. Bertolini F, Shaked Y, Mancuso P, et al. The multifaceted circulating endothelial cells in cancer: towards marker and target identification. Nat Rev Cancer 2006; 6: 835–45.

    Article  PubMed  CAS  Google Scholar 

  89. Italiano J, Richardson JL, Folkman J, et al. Blood platelets organize pro- and anti-angiogenic factors into separate, distinct Alpha granules: implications for the regulation of angiogenesis. Abstr 301 48th ASH Annual Meeting.

    Google Scholar 

  90. Schneider BP, Skaar TC, Sledge GW, et al. Analysis of angiogenesis genes from paraffin-embedded breast tumor and lymph node. Breast Cancer Res Treatment 2006; 96:209–15.

    Article  CAS  Google Scholar 

  91. Godl K, Gruss OJ, Eickoff J, et al. Proteomic characterization of the angiogenesis inhibitor of SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res 2005; 65 (15): 6919–26.

    Article  PubMed  CAS  Google Scholar 

  92. Rehman S and Jayson GC. Molecular imaging of antiangiogenic agents. Oncologist 2005; 10: 92–103.

    Article  PubMed  CAS  Google Scholar 

  93. Miller JC, Pien HH, Sahani D, Sorensen AG. Imaging angiogenesis: applications and potential drug development. J Nat Cancer Inst 2005; 97: 172–87.

    Article  PubMed  CAS  Google Scholar 

  94. Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK 787/ZD 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 2003; 21: 3955–64.

    Article  PubMed  CAS  Google Scholar 

  95. Liu G, Rugo HS, Wilding G, McShane TM, et al. Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J Clin Oncol 2005;23: 5464–73.

    Article  PubMed  CAS  Google Scholar 

  96. Wedam SB, Low JA, Yang SX, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 2006;24: 769–77.

    Article  PubMed  CAS  Google Scholar 

  97. Korn EL, Arbuck SG, Pluda JM, et al. Clinical trial designs for cytostatic agents: Are new approaches needed? J Clin Oncol 2001; 19: 265–72.

    PubMed  CAS  Google Scholar 

  98. Rogatko A, Babb JS, Tighiouart M, et al. New paradigm in dose-finding trails : patient-specific dosing and beyond phase I. Clin Cancer Res 2005; 11; 5342–46.

    Article  PubMed  CAS  Google Scholar 

  99. Therasse P, Eisenhauer EA, and Buyse M. Update in methodology and conduct of clinical cancer. Eur J Clin Oncol 2006; 42: 1322–30.

    CAS  Google Scholar 

  100. Michaelis LC, Ratain M. Measuring response in a post-RECIST world : from black and white to shades of grey. Nature 2006; 6; 409–14.

    CAS  Google Scholar 

  101. Rubinstein LV, Korn EL, Freidlin B, t al. Design issues randomized Phase II trials and a proposal for Phase II screening trials. J Clin Oncol 2005; 23; 7199–7206.

    Article  PubMed  Google Scholar 

  102. Rosner GL, Stadler W, Ratain MJ. Randomized discontinuation design. Application to cytostatic antineoplastic agents. J Clin Oncol 2002; 20:4478–84.

    Article  PubMed  CAS  Google Scholar 

  103. Betensky RA et al. influence of unrecognized molecular heterogeneity on randomized clinical trials. J Clin Oncol 2002; 20: 2495–2499.

    Article  PubMed  Google Scholar 

  104. Kim SJ, Uehara H, Karashima T, et al. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res 2003; 9:1200–1210.

    PubMed  CAS  Google Scholar 

  105. de Jong JS, van Diest PJ, van der Valk P, et al. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. J Pathol 1998; 184:53–57.

    Article  PubMed  Google Scholar 

  106. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB2-neu receptor tyrosine kinase down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo. Am J Pathol 1997; 151:1523–1530.

    PubMed  CAS  Google Scholar 

  107. Hirata A, Ogawa S, Kometani T, et al. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 2002; 62:2554–2560.

    PubMed  CAS  Google Scholar 

  108. Ciardiello F, Caputo R, Damiano V, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res 2003; 9:1546–1556.

    PubMed  CAS  Google Scholar 

  109. Herbst RS, Mininberg E, Henderson T, et al. Phase I/II trial evaluating blockade of tumor blood supply and tumor cell proliferation with combined bevacizumab and erlotinib HCl as targeted cancer therapy in patients with recurrent non-small cell lung cancer. Eur J Cancer 2003;1:S293.

    Google Scholar 

  110. Jung YD, Mansfield PF, Akagi M, et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38:1133–1140.

    Article  PubMed  CAS  Google Scholar 

  111. Ciardiello F, Bianco R, Damiano V, et al. Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 2000; 6:3739–3747.

    PubMed  CAS  Google Scholar 

  112. Shaheen RM, Ahmad SA, Liu W, et al. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 2001; 85:584–589.

    Article  PubMed  CAS  Google Scholar 

  113. Guy SP, Ashton S, Hughes G, et al. Gefitinib (Iressa, ZD1839) enhances the activity of the novel vascular-targeting agent ZD6126 in human colorectal cancer and non-small cell lung cancer (NSCLC) xenograft models. Clin Cancer Res 2003;9:6142S (abstr; suppl B13).

    Google Scholar 

  114. Hainsworth JD, Jeffrey AS, Spigel DR, et al. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 2005; 23(31): 7889–96.

    Article  PubMed  CAS  Google Scholar 

  115. Dickler M, Rugo H, Caravelli J, et al. Phase II trial of erlotinib (OSI-774), an epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, and bevacizumab, a recombinant humanized monoclonal antibody to vascular endothelial growth factor (VEGF), in patients (pts) with metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 2004; 23:127, (abstr 2001).

    Google Scholar 

  116. Mauer AM, Cohen EEW, Wong SJ, et al. Phase I study of epidermal growth factor receptor (EGFR) inhibitor, erlotinib, and vascular endothelial growth factor monoclonal antibody, bevacizumab, in recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN). Proc Am Soc Clin Oncol 2004; 23:496(abstr 5539).

    Google Scholar 

  117. Herbst RS, Johnson DH, Mininberg E, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination wit the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005; 23:2544–2555.

    Article  PubMed  CAS  Google Scholar 

  118. Hainsworth JD, Sosman JA, Spigel DR, et al. Treatment of metastatic renal cell carcinoma: a combination of bevacizumab and erlotinib. J Clin Oncol 2005; 23: 7889–96.

    Article  PubMed  CAS  Google Scholar 

  119. Saltz LB, Chung KY. Antibody-based therapies for colorectal cancer. The Oncologist 2005; 10: 701–9.

    Article  PubMed  Google Scholar 

  120. Konecny GE, Meng YG, Untch M, et al. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer. Clin Cancer Res 2004; 10: 1706–16.

    Article  PubMed  CAS  Google Scholar 

  121. Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 2006; 312: 1171–78.

    Article  PubMed  CAS  Google Scholar 

  122. Kieran MW, Turner CD, Rubin JB, et al. A feasibility trial of antiangiogenic(metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 2005; 27: 573–81.

    Article  PubMed  Google Scholar 

  123. Ozols RF, Herbst RS, Colson YL, et al. Clinical cancer advances 2006: major research advances in cancer treatment, prevention, and screening-A report from the American Society of Clinical Oncology. J Clin Oncol 2007; 25: 146–62.

    Article  PubMed  CAS  Google Scholar 

  124. Parulekar WR, Eisenhauer EA. Phase I trial design for solid tumor studies of targeted, non- cytotoxic agents: theory and practice. J Natl Cancer Inst 2004;96: 990–997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sarmiento, R., Longo, R., Gasparini, G. (2008). Challenges of Antiangiogenic Therapy of Tumors. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics