Skip to main content

Intracellular Pathogens and the Actin Cytoskeleton

  • Chapter
Actin-Binding Proteins and Disease

Part of the book series: Protein Reviews ((PRON,volume 8))

  • 1010 Accesses

Intracellular pathogens co-opt cellular machinery in many ways. It has long been recognized that the life cycle of most viruses depends on host cell DNA replication enzymes. More recently, intracellular bacteria as well as viruses have been discovered to disrupt and redirect the host cell cytoskeleton to assist their survival and growth. Understanding pathogen-cytoskeleton interactions will provide fresh insights into targets for drug therapies or for design of immunogens for preventive vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M. L., Dobrowolski, J. M., Muller, H., Sibley, L. D. and Mansour, T. E. 1997. Cloning and characterization of actin depolymerizing factor from Toxoplasma gondii. Mol. Biochem. Parasitol. 88, 43-52.

    Article  PubMed  Google Scholar 

  • Antinone, S. E. and Smith, G. A. 2006. Two modes of herpesvirus trafficking in neurons: Membrane acquisition directs motion. J. Virol. 80, 11235-11240.

    Article  Google Scholar 

  • Arhel, N., Genovesio, A., Kim, K. A., Miko, S., Perret, E., Olivo-Marin, J. C., Shorte, S. and Charneau, P. 2006. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods 3, 817-824.

    Article  PubMed  Google Scholar 

  • Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T. W., Green, J. L., Holder, A. A. and Cowman, A. F. 2006. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicom-plexan parasites. J. Biol. Chem. 281, 5197-5208.

    Article  PubMed  Google Scholar 

  • Bearer, E. L. 1991. Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ. J. Cell Biol. 115, 1629-1638.

    Article  PubMed  Google Scholar 

  • Bearer, E. L. 1992. An actin-associated protein present in the microtubule organizing center and the growth cones of PC-12 cells. J. Neurosci. 12, 750-761.

    PubMed  Google Scholar 

  • Bearer, E. L. 1995. Cytoskeletal domains in the activated platelet. Cell Motil. Cytoskeleton 30, 50-66.

    Article  Google Scholar 

  • Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S. and LaVail, J. H. 2000. Retrograde axonal transport of herpes simplex virus: Evidence for a single mechanism and a role for tegument. Proc. Natl Acad. Sci. USA 97, 8146-8150.

    Article  PubMed  Google Scholar 

  • Bearer, E. L. and Satpute-Krishnan, P. 2002. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: Tracks, motors, and polymerization machines. Curr. Drug Targets Infect. Disord. 2, 247-264.

    Article  PubMed  Google Scholar 

  • Bukrinskaya, A., Brichacek, B., Mann, A. and Stevenson, M. 1998. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188, 2113-2125.

    Article  PubMed  Google Scholar 

  • Campbell, E. M., Nunez, R. and Hope, T. J. 2004. Disruption of the actin cytoskeleton can complement the ability of Nef to enhance human immunodeficiency virus type 1 infectivity. J. Virol. 78, 5745-5755.

    Article  PubMed  Google Scholar 

  • Carlsson, F. and Brown, E. J. 2006. Actin-based motility of intracellular bacteria, and polarized surface distribution of the bacterial effector molecules. J. Cell. Physiol. 209,288-296.

    Article  PubMed  Google Scholar 

  • Chan, K. S., Verardi, P. H., Legrand, F. A. and Yilma, T. D. 2005. Nef from pathogenic simian immunodeficiency virus is a negative factor for vaccinia virus. Proc. Natl Acad. Sci. USA 102, 8734-8739.

    Article  PubMed  Google Scholar 

  • Chaparro-Olaya, J., Margos, G., Coles, D. J., Dluzewski, A. R., Mitchell, G. H., Wasserman, M. M. and Pinder, J. C. 2005. Plasmodium falciparum myosins: Transcription and translation during asexual parasite development. Cell Motil. Cytoskeleton 60, 200-213.

    Article  PubMed  Google Scholar 

  • Charlton, C. A. and Volkman, L. E. 1991. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. J. Virol. 65,1219-1227.

    PubMed  Google Scholar 

  • Cowman, A. F. and Crabb, B. S. 2006. Invasion of red blood cells by malaria parasites. Cell 124, 755-766.

    Article  PubMed  Google Scholar 

  • DeGiorgis, J. A., Reese, T. S. and Bearer, E. L. 2002. Association of a nonmuscle myosin II with axoplasmic organelles. Mol. Biol. Cell 13, 1046-1057.

    Article  PubMed  Google Scholar 

  • Dobrowolski, J. M. and Sibley, L. D. 1996. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84, 933-939.

    Article  PubMed  Google Scholar 

  • Dohner, K., Radtke, K., Schmidt, S. and Sodeik, B. 2006. Eclipse phase of herpes simplex virus type 1 infection: Efficient dynein-mediated capsid transport without the small capsid protein VP26. J. Virol. 80, 8211-8224.

    Article  PubMed  Google Scholar 

  • van Eijl, H., Hollinshead, M. and Smith, G. L. 2000. The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271, 26-36.

    Article  PubMed  Google Scholar 

  • Fackler, O. T. and Krausslich, H. G. 2006. Interactions of human retroviruses with the host cell cytoskeleton. Curr. Opin. Microbiol. 9, 409-415.

    Article  PubMed  Google Scholar 

  • Fackler, O. T., Luo, W., Geyer, M., Alberts, A. S. and Peterlin, B. M. 1999. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol. Cell 3, 729-739.

    Article  PubMed  Google Scholar 

  • Feierbach, B., Piccinotti, S., Bisher, M., Denk, W. and Enquist, L. W. 2006. AlphaHerpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2, e85.

    Article  PubMed  Google Scholar 

  • Forest, T., Barnard, S. and Baines, J. D. 2005. Active intranuclear movement of herpesvirus capsids. Nat. Cell Biol. 7, 429-431.

    Article  PubMed  Google Scholar 

  • Frischknecht, F., Moreau, V., Rottger, S., Gonfloni, S., Reckmann, I., Superti-Furga, G. and Way, M. 1999. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926-929.

    Article  PubMed  Google Scholar 

  • Galan, J. E. and Cossart, P. 2005. Host-pathogen interactions: A diversity of themes, a variety of molecular machines. Curr. Opin. Microbiol. 8, 1-3.

    Article  PubMed  Google Scholar 

  • Gardet, A., Breton, M., Fontanges, P., Trugnan, G. and Chwetzoff, S. 2006. Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. J. Virol. 80, 3947-3956.

    Article  PubMed  Google Scholar 

  • Gaskins, E., Gilk, S., DeVore, N., Mann, T., Ward, G. and Beckers, C. 2004. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J. Cell Biol. 165, 383-393.

    Article  PubMed  Google Scholar 

  • Goley, E. D., Ohkawa, T., Mancuso, J., Woodruff, J. B., D’Alessio, J. A., Cande, W. Z., Volkman, L. E. and Welch, M. D. 2006. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314, 464-467.

    Article  PubMed  Google Scholar 

  • Gordon, J. L. and Sibley, L. D. 2005. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 6, 179.

    Article  PubMed  Google Scholar 

  • Gouin, E., Welch, M. D. and Cossart, P. 2005. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35-45.

    Article  PubMed  Google Scholar 

  • Haller, C., Rauch, S., Michel, N., Hannemann, S., Lehmann, M. J., Keppler, O. T. and Fackler, O. T. 2006. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J. Biol. Chem. 281, 19618-19630.

    Article  PubMed  Google Scholar 

  • Heintzelman, M. B. and Schwartzman, J. D. 2001. Myosin diversity in Apicomplexa. J. Parasitol. 87, 429-432.

    PubMed  Google Scholar 

  • Honess, R. W. and Roizman, B. 1973. Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cell. J. Virol. 12, 1347-1365.

    PubMed  Google Scholar 

  • Jewett, T. J. and Sibley, L. D. 2003. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol. Cell 11, 885-894.

    Article  PubMed  Google Scholar 

  • Jouvenet, N., Windsor, M., Rietdorf, J., Hawes, P., Monaghan, P., Way, M. and Wileman, T. 2006. African swine fever virus induces filopodia-like projections at the plasma membrane. Cell. Microbiol. 8, 1803-1811.

    Article  PubMed  Google Scholar 

  • Kasman, L. M. and Volkman, L. E. 2000. Filamentous actin is required for lepidopteran nucleopolyhedrovirus progeny production. J. Gen. Virol. 81, 1881-1888.

    PubMed  Google Scholar 

  • Katz, E., Ward, B. M., Weisberg, A. S. and Moss, B. 2003. Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. J. Virol. 77, 12266-12275.

    Article  PubMed  Google Scholar 

  • Komano, J., Miyauchi, K., Matsuda, Z. and Yamamoto, N. 2004. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol. Biol. Cell 15, 5197-5207.

    Article  PubMed  Google Scholar 

  • Kronstad, J. W. 2006. Serial analysis of gene expression in eukaryotic pathogens. Infect. Disord. Drug Targets 6, 281-297.

    Article  PubMed  Google Scholar 

  • Lakadamyali, M., Rust, M. J., Babcock, H. P. and Zhuang, X. 2003. Visualizing infection of individual influenza viruses. Proc. Natl Acad. Sci. USA 100, 9280-9285.

    Article  PubMed  Google Scholar 

  • Lehmann, M. J. and Frischknecht, F. 2006. Surfing through a sea of sharks: Report on the British Society for Cell Biology meeting on `Signaling and Cytoskeletal Dynamics During Infection’, October 2-5, 2005, Edinburgh, Scotland. Traffic 7, 479-487.

    Article  PubMed  Google Scholar 

  • Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. and Mothes, W. 2005. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170, 317-325.

    Article  PubMed  Google Scholar 

  • Li, Z., Kim, E. S. and Bearer, E. L. 2002. Arp2/3 complex is required for actin polymerization during platelet shape change. Blood 99, 4466-4474.

    Article  PubMed  Google Scholar 

  • Luxton, G. W., Haverlock, S., Coller, K. E., Antinone, S. E., Pincetic, A. and Smith, G. A. 2005. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc. Natl Acad. Sci. USA 102, 5832-5837.

    Article  PubMed  Google Scholar 

  • Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. and Pollard, T. D. 1994. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107-115.

    Article  PubMed  Google Scholar 

  • Miller, L. H., Aikawa, M., Johnson, J. G. and Shiroishi, T. 1979. Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J. Exp. Med. 149, 172-184.

    Article  PubMed  Google Scholar 

  • Moreau, V., Frischknecht, F., Reckmann, I., Vincentelli, R., Rabut, G., Stewart, D. and Way, M. 2000. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat. Cell Biol. 2, 441-448.

    Article  PubMed  Google Scholar 

  • Munter, S., Way, M. and Frischknecht, F. 2006. Signaling during pathogen infection. Sci. STKE 2006, re5.

    Google Scholar 

  • Newsome, T. P., Scaplehorn, N. and Way, M. 2004. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124-129.

    Article  PubMed  Google Scholar 

  • Newsome, T. P., Weisswange, I., Frischknecht, F. and Way, M. 2006. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell. Microbiol. 8, 233-241.

    Article  PubMed  Google Scholar 

  • Niederman, T. M., Hastings, W. R. and Ratner, L. 1993. Myristoylation-enhanced binding of the HIV-1 Nef protein to T cell skeletal matrix. Virology 197, 420-425.

    Article  PubMed  Google Scholar 

  • Ohkawa, T., Rowe, A. R. and Volkman, L. E. 2002. Identification of six Autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of G-actin. J. Virol. 76, 12281-12289.

    Article  PubMed  Google Scholar 

  • Quaranta, M. G., Mattioli, B., Spadaro, F., Straface, E., Giordani, L., Ramoni, C., Malorni, W. and Viora, M. 2003. HIV-1 Nef triggers Vav-mediated signaling pathway leading to functional and morphological differentiation of dendritic cells. FASEB J. 17, 2025-2036.

    Article  PubMed  Google Scholar 

  • Radtke, K., Dohner, K. and Sodeik, B. 2006. Viral interactions with the cytoskeleton: A hitchhiker’s guide to the cell. Cell. Microbiol. 8, 387-400.

    Article  PubMed  Google Scholar 

  • Rietdorf, J., Ploubidou, A., Reckmann, I., Holmstrom, A., Frischknecht, F., Zettl, M., Zimmermann, T. and Way, M. 2001. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat. Cell Biol. 3, 992-1000.

    Article  PubMed  Google Scholar 

  • Rottger, S., Frischknecht, F., Reckmann, I., Smith, G. L. and Way, M. 1999. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J. Virol. 73, 2863-2875.

    PubMed  Google Scholar 

  • Rottner, K., Stradal, T. E. and Wehland, J. 2005. Bacteria-host-cell interactions at the plasma membrane: Stories on actin cytoskeleton subversion. Dev. Cell 9, 3-17.

    Article  PubMed  Google Scholar 

  • Sahoo, N., Beatty, W., Heuser, J., Sept, D. and Sibley, L. D. 2006. Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol. Biol. Cell 17, 895-906.

    Article  PubMed  Google Scholar 

  • Saksena, M. M., Wakisaka, H., Tijono, B., Boadle, R. A., Rixon, F., Takahashi, H. and Cunningham, A. L. 2006. Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. J. Virol. 80, 3592-3606.

    Article  PubMed  Google Scholar 

  • Satpute-Krishnan, P., DeGiorgis, J. A. and Bearer, E. L. 2003. Fast anterograde transport of herpes simplex virus: Role for the amyloid precursor protein of Alzheimer’s disease. Aging Cell 2, 305-318.

    Article  PubMed  Google Scholar 

  • Satpute-Krishnan, P., DeGiorgis, J. A., Conley, M. P., Jang, M. and Bearer, E. L. 2006. A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc. Natl Acad. Sci. USA 103, 16532-16537.

    Article  PubMed  Google Scholar 

  • Scaplehorn, N., Holmstrom, A., Moreau, V., Frischknecht, F., Reckmann, I. and Way, M. 2002. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol. 12, 740-745.

    Article  PubMed  Google Scholar 

  • Schmitz, S., Grainger, M., Howell, S., Calder, L. J., Gaeb, M., Pinder, J. C., Holder, A. A. and Veigel, C. 2005. Malaria parasite actin filaments are very short. J. Mol. Biol. 349, 113-125.

    Article  PubMed  Google Scholar 

  • Schuler, H. and Matuschewski, K. 2006. Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 7, 1433-1439.

    Article  PubMed  Google Scholar 

  • Schuler, H., Mueller, A. K. and Matuschewski, K. 2005. A Plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. Mol. Biol. Cell 16, 4013-4023.

    Article  PubMed  Google Scholar 

  • Shaw, M. K. and Tilney, L. G. 1999. Induction of an acrosomal process in Toxoplasma gondii: Visualization of actin filaments in a protozoan parasite. Proc. Natl Acad. Sci. USA 96, 9095-9099.

    Article  PubMed  Google Scholar 

  • Simpson-Holley, M., Colgrove, R. C., Nalepa, G., Harper, J. W. and Knipe, D. M. 2005. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J. Virol. 79, 12840-12851.

    Article  PubMed  Google Scholar 

  • Simpson-Holley, M., Ellis, D., Fisher, D., Elton, D., McCauley, J. and Digard, P. 2002. A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301, 212-225.

    Article  PubMed  Google Scholar 

  • Smith, G. L., Murphy, B. J. and Law, M. 2003. Vaccinia virus motility. Annu. Rev. Microbiol. 57, 323-342.

    Article  PubMed  Google Scholar 

  • Snyder, A., Wisner, T. W. and Johnson, D. C. 2006. Herpes simplex virus capsids are transported in neuronal axons without an envelope containing the viral glycoproteins. J. Virol. 80, 11165-11177.

    Article  PubMed  Google Scholar 

  • Svitkina, T. M., Bulanova, E. A., Chaga, O. Y., Vignjevic, D. M., Kojima, S., Vasiliev, J. M. and Borisy, G. G. 2003. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409-421.

    Article  PubMed  Google Scholar 

  • Tardieux, I., Liu, X., Poupel, O., Parzy, D., Dehoux, P. and Langsley, G. 1998. A Plasmodium falciparum novel gene encoding a coronin-like protein which associates with actin filaments. FEBS Lett. 441, 251-256.

    Article  PubMed  Google Scholar 

  • Tilney, L. G., Connelly, P. S. and Portnoy, D. A. 1990. Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes. J. Cell Biol. 111, 2979-2988.

    Article  PubMed  Google Scholar 

  • Way, M. 1998. Interaction of vaccinia virus with the actin cytoskeleton. Folia Microbiol. (Praha) 43, 305-310.

    Article  Google Scholar 

  • Welch, M. D., Iwamatsu, A. and Mitchison, T. J. 1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265-269.

    Article  PubMed  Google Scholar 

  • Wells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A. and Sweeney, H. L. 1999. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505-508.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bearer, E.L. (2008). Intracellular Pathogens and the Actin Cytoskeleton. In: dos Remedios, C.G., Chhabra, D. (eds) Actin-Binding Proteins and Disease. Protein Reviews, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71749-4_13

Download citation

Publish with us

Policies and ethics