Skip to main content

In Vitro–In Vivo Correlation on Parenteral Dosage Forms

  • Chapter
Biopharmaceutics Applications in Drug Development

In vitro and in vivo correlation (IVIVC) for drug products, especially for solid oral dosage forms, has been developed to predict product bioavailability from in vitro dissolution. Biological properties such as Cmax, or AUC have been used to correlate with in vitro dissolution behavior such as percent drug release in order to establish IVIVC. IVIVC can be used to set product dissolution specifications; and as a surrogate for in vivo bioequivalence in the case of any changes with respect to formulation, process, or manufacturing site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, C. M., Huang, D., Schmitz, J. P., and Athanasiou, K. A. (1997). Elevated temper-ature degradation of a 50: 50 copolymer of PLA-PGA. Tissue Engineering 3: 345-352.

    Article  CAS  Google Scholar 

  • Anderson M. and Omri, A. (2004). The effect of different lipid components on the in vitrostability and release kinetics of liposome formulations. Drug Delivery 11: 33-39.

    Article  PubMed  CAS  Google Scholar 

  • Aso, Y., Yoshioka, S., Li Wan Po, A., and Terao, T. (1994). Effect of temperature on mechanisms of drug release and matrix degradation of poly(-lactide) microspheres. Journal of Controlled Release 31: 33-39.

    Article  CAS  Google Scholar 

  • Blanco-Prieto, M. J., Besseghir, K., Orsolini, P., Heimgartner, F., Deuschel, C., Merkle, H. P., Nam-Tran, H., and Gander, B. (1999). Importance of the test medium for the release kinetics of a somatostatin analogue from poly(-lactide-co-glycolide) microspheres. International Journal of Pharmaceutics 184: 243-250.

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Prieto, M. J., Campanero, M. A., Besseghir, K., Heimgatner, F., and Gander, B. (2004). Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres. Journal of Controlled Release 96: 437-448.

    Article  PubMed  CAS  Google Scholar 

  • Bochot, A., Fattal, E., Gulik, A., Couarraze, G., and Couvreur, P. (1998). Liposomes dispersed within a thermosensitive gel: a new dosage form for ocular delivery of oligonucleotides. Pharmaceutical Research 15: 1364-1369.

    Article  PubMed  CAS  Google Scholar 

  • Boschi, G. and Scherrmann, J. (2000). Microdialysis in mice for drug delivery research. Advanced Drug Delivery Reviews 45: 271-281.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, A., Mader, K., and Gopferich, A. (1999). pH and Osmotic pressure inside biodegradable microspheres during erosion. Pharmaceutical Research 16: 847-853.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, D. J. and Hickey, A. J. (1994). Microsphere technology and applications. In Swarbrick, J., Boylan, J. C. (eds.), Encyclopedia of Pharmaceutical Technology, Vol. 10, Marcel Dekker, New York, pp. 1-29.

    Google Scholar 

  • Burgess, D. J., Crommelin, D. J. A., Hussain, A. J., and Chen, M.-L. (2004). EUFEPS workshop report, assuring quality and performance of sustained and controlled release parenterals. European Journal of Pharmaceutical Sciences 21: 679-690.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, R. Y., Kuba, R., Rauth, A. M., and Wu, X. Y. (2004). A new approach to the in vivo and in vitro investigation of drug release from locoregionally delivered microspheres. Journal of Controlled Release 100: 121-133.

    Article  PubMed  CAS  Google Scholar 

  • Chidambaram, N. and Burgess, D. J. (1999). A novel in vitro release method for submicronsized dispersed systems. AAPS pharmSci 1: Article 11.

    Google Scholar 

  • Cleland, J. L. (1997). Protein delivery from biodegradable micropsheres. In Sanders, L. M., Hendren, R. W. (eds.), Protein Delivery: Physical Systems, Plenum Press, New York, pp. 1-41.

    Google Scholar 

  • Crommelin, D. J. and Storm, G. (2003). Liposomes: from the bench to the bed. Journal of Liposome Research 13: 33-36.

    Article  PubMed  Google Scholar 

  • Dash, A. K., Haney, P. W., and Garavalia, M. J. (1999). Development of an in vitro dissolution method using microdialysis sampling technique for implantable drug delivery systems. Journal of Pharmaceutical Sciences 88: 1036-1040.

    Article  PubMed  CAS  Google Scholar 

  • Diaz, R. V., Llabres, M., and Evora, C. (1999). One-month sustained release microspheres of 125I-bovine calcitonin. In vitro-in vivo studies. Journal of Controlled Release 59: 55-62.

    Article  PubMed  CAS  Google Scholar 

  • Faisant, N., Siepmann, J., and Benoit, J. P. (2002). PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. European Journal of Pharmaceutical Sciences 15: 355-366.

    Article  PubMed  CAS  Google Scholar 

  • FDA Draft Guidance: Liposome Drug Products. (August 2002).

    Google Scholar 

  • Flynn, G. L., Yalkowsky, S. H., and Roseman, T. J. (1974). Mass transport phenomena and models: theoretical concepts. Journal of Pharmaceutical Sciences 63: 479-510.

    Article  PubMed  CAS  Google Scholar 

  • Frechet, J. M. J. and Tomalia, D. A. (2002). Dendrimers and other Dendritic Polymers, Wiley, Chichester, UK.

    Google Scholar 

  • Galeska, I., Kim, T.-K., Patil, S., Bhardwaj, U., Chatttopadhyay, D., Papadimitrakopou-los, F., and Burgess, D. J. (2005). Controlled release of dexamethasone from plga microspheres embedded within polyacid-containing PVA hydrogels. AAPS Journal 7: Article 22.

    Google Scholar 

  • Gillies, E. R. and Frechet, J. M. (2002). Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Journal of the American Chemical Society 124: 14137-14146.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, E. R., Dy, E., Frechet, J. M. J., and Szoka, F. C. (2005). Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Molecular Pharmaceutics 2: 129-138.

    Article  PubMed  CAS  Google Scholar 

  • Gopferich, A. (1996). Polymer degradation and erosion: mechanisms and applications. European Journal of Pharmaceutics and Biopharmaceutics 42: 1-11.

    Google Scholar 

  • Hakkarainen, M., Albertsson, A.-C., and Karlsson, S. (1996). Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degra-dation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability 52: 283-291.

    Article  CAS  Google Scholar 

  • Herben, V. M., ten Bokkel Huinink, W. W., Schot, M. E., Hudson, I., and Beijnen, J. H. (1998). Continuous infusion of low-dose topotecan: pharmacokinetics and pharmacody-namics during a phase II study in patients with small cell lung cancer. Anti-Cancer Drugs 9: 411-418.

    Article  PubMed  CAS  Google Scholar 

  • Heya, T., Okada, H., Ogawa, Y., and Toguchi, H. (1994a). In vitro and in vivo evaluation of thyrotrophin releasing hormone release from copoly(dl-lactic/glycolic acid) microspheres. Journal of Pharmaceutical Sciences 83: 636-640.

    Article  PubMed  CAS  Google Scholar 

  • Heya, T., Mikura, Y., Nagai, A., Miura, Y., Futo, T., Tomida, Y., Shimizu, H., and Toguchi, H. (1994b). Controlled release of thyrotropin releasing hormone from microspheres: evaluation of release profiles and pharmacokinetics after subcutaneous administration. Journal of Pharmaceutical Sciences 83: 798-801.

    Article  PubMed  CAS  Google Scholar 

  • Hochster, H., Liebes, L., Speyer, J., Sorich, J., Taubes, B., Oratz, R., Wernz, J., Chachoua, A., Raphael, B., and Vinci, R. Z., et al. (1994). Phase I trial of low-dose continuous topotecan infusion in patients with cancer: an active and well-tolerated regimen. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 12: 553-559.

    CAS  Google Scholar 

  • Hoffman, A. S. (2001). Hydrogels for biomedical applications. Annals of the New York Academy of Sciences 944: 62-73.

    Article  PubMed  CAS  Google Scholar 

  • http://www.astrazeneca-us.com/pi/diprivan.pdf

  • http://www.gene.com/gene/products/information/opportunistic/nutropin-depot/insert.jsp

  • Jain, S., Jain, R., Chourasia, M., Jain, A., Chalasani, K., Soni, V., and Jain, A. (2005). Design and development of multivesicular liposomal depot delivery system for controlled systemic delivery of acyclovir sodium. AAPS PharmSciTech 06: E35-E41.

    Article  CAS  Google Scholar 

  • Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., McKeown, N. B., and D’Emanuele, A. (2003). The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International Journal of Pharmaceutics 252: 263-266.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, G., Woo, B. H., Kang, F., Singh, J., and DeLuca, P. P. (2002). Assessment of pro-tein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(d,l-lactide-co-glycolide) microspheres. Journal of Controlled Release 79: 137-145.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, G., Qiu, W., and DeLuca, P. P. (2003). Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres. Pharmaceutical Research 20: 452-459.

    Article  PubMed  CAS  Google Scholar 

  • Kadir, F., Oussoren, C., and Crommelin, D. J. (1999). Liposomal formulations to reduce irritation of intramuscularly and subcutaneously administered drugs. In Gupta, P. K., Brazeau, G. A. (eds.), Injectable Drug Development. Techniques to Reduce Pain and Irritation, Interpharm Press, Denver, Colorado, pp. 337-354.

    Google Scholar 

  • Kim, T.-K. and Burgess, D. J. (2002). Pharmacokinetic characterization of 14 C-vascular endothelial growth factor controlled release microspheres using a rat model. Journal of Pharmacy and Pharmacology 54: 897-905.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T. I., Seo, H. J., Choi, J. S., Jang, H. S., Baek, J. U., Kim, K., and Park, J. S. (2004). PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules 5: 2487-2492.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H. and Brechbiel, M. W. (2004). Dendrimer-based nanosized MRI contrast agents. Current Pharmaceutical Biotechnology 5: 539-549.

    Article  PubMed  CAS  Google Scholar 

  • Kukowska-Latallo, J. F., Bielinska, A. U., Johnson, J., Spindler, R., Tomalia, D. A., and Baker, Jr., J. R. (1996). Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proceedings of the National Academy of Sciences of the United States of America 93: 4897-4902.

    Article  PubMed  CAS  Google Scholar 

  • Kukowska-Latallo, J. F., Candido, K. A., Cao, Z., Nigavekar, S. S., Majoros, I. J., Thomas, T. P., Balogh, L. P., Khan, M. K., and Baker, Jr., J. R. (2005). Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Research 65: 5317-524.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni, R. K., Moore, E. G., Hegyeli, A. F., and Leonard, F. (1971). Biodegradable poly (lactic acid) polymers. Journal of Biomedical Materials Research 5: 169-181.

    Article  PubMed  CAS  Google Scholar 

  • Kurihara, A., Shibayama, Y., Mizota, A., Yasuno, A., Ikeda, M., and Hisaoka, M. (1996). Pharmacokinetics of highly lipophilic antitumor agent palmitoyl rhizoxin incorporated in lipid emulsions in rats. Biological & Pharmaceutical Bulletin 19: 252-258.

    CAS  Google Scholar 

  • Lalloo, A., Chao, P., Hu, P., Stein, S., and Sinko, P. J. (2006). Pharmacokinetic and phar-macodynamic evaluation of a novel in situ forming poly(ethylene glycol)-based hydro-gel for the controlled delivery of the camptothecins. Journal of Controlled Release 112: 333-342.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. C., MacKay, J. A., Frechet, J. M., and Szoka, F. C. (2005). Designing dendrimers for biological applications. Nature Biotechnology 23: 1517-1526.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, V., Belair, J., and Hildgen, P. (2003). Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process. International Journal of Pharmaceutics 258: 95-107.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. H. (1990). Controlled release of bioactive agents from lactide glycolide polymers, Marcel Dekker, New York.

    Google Scholar 

  • Li, S., Girard, A., Garreau, H., and Vert, M. (2000). Enzymic degradation of polylactide stereocopolymers with predominant D-lactyl contents. Polymer Degradation and Stability 71: 61-67.

    Article  Google Scholar 

  • Liu, M., Kono, K., and Frechet, J. M. (2000). Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. Journal of Controlled Release 65: 121-131.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F. I., Kuo, J. H., Sung, K. C., and Hu, O. Y. (2003). Biodegradable polymeric microspheres for nalbuphine prodrug controlled delivery: in vitro characterization and in vivo pharmacokinetic studies. International Journal Pharmaceutics 257: 23-31.

    Article  CAS  Google Scholar 

  • Mader, K., Bittner, B., Li, Y., Wohlauf, W., and Kissel, T. (1998). Monitoring microviscos-ity and microacidity of the albumin microenvironment inside degrading microparticles from poly(lactide-co-glycolide) (PLG) or ABA-triblock polymers containing hydropho-bic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethyleneoxide) B blocks. Pharmaceutical Research 15: 787-793.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H., Sawa, T., and Konno, T. (2001). Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release 74: 47-61.

    Article  PubMed  CAS  Google Scholar 

  • Magenheim, B., Levy, M. Y., and Benita, S. (1993). A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. International Journal of Pharmaceutics 94: 115-123.

    Article  CAS  Google Scholar 

  • Makino, K., Ohshima, H., and Kondo, T. (1986). Mechanism of hydrolytic degradation of poly(lactide) microcapsules: effects of pH, ionic strength and buffer concentration. Journal of Microencapsulation 3: 203-212.

    Article  PubMed  CAS  Google Scholar 

  • Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J. W., Meijer, E. W., Paulus, W., and Duncan, R. (2000). Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. Journal of Controlled Release 65: 133-148.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, S., Faibushevich, A. A., Garnick, S., McLaughlin, K., and Lunte, C. (2002). Determination of local tissue concentrations of bupivacaine released from biodegradable microspheres and the effect of vasoactive compounds on bupivacaine tissue clearance studied by microdialysis sampling. Pharmaceutical Research 19: 1745-1752.

    Article  PubMed  CAS  Google Scholar 

  • Moghimi, S. M., Hunter, A. C., and Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews 53: 283-318.

    PubMed  CAS  Google Scholar 

  • Morita, T., Sakamura, Y., Horikiri, Y., Suzuki, T., and Yoshino, H. (2001). Evaluation of in vivo release characteristics of protein-loaded biodegradable microspheres in rats and severe combined immunodeficiency disease mice. Journal of Controlled Release 73: 213-221.

    Article  PubMed  CAS  Google Scholar 

  • Moussy, F., Kreutzer, D., Burgess, D., Koberstein, J., Papadimitrakopoulos, F., and Huang, S. (2003). US Patent: apparatus and method for control of tissue/implant interactions.

    Google Scholar 

  • Negrin, C. M., Delgado, A., Llabres, M., and Evora, C. (2001). In vivo-in vitro study of biodegradable methadone delivery systems. Biomaterials 22: 563-570.

    Article  PubMed  CAS  Google Scholar 

  • Negrin, C. M., Delgado, A., Llabres, M., and Evora, C. (2004). Methadone implants for methadone maintenance treatment. In vitro and in vivo animal studies. Journal of Con-trolled Release 95: 413-421.

    Article  CAS  Google Scholar 

  • Newkome, G. R., Moorefield, C. N., and Vogtle, F. (2001). Dendrimers and Dendrons: Concepts, Syntheses, Applications, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  • Okada, H. (1997). One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Advanced Drug Delivery Reviews 28: 43-70.

    Article  PubMed  CAS  Google Scholar 

  • PadillaDeJesus, O. L., Ihre, H. R., Gagne, L., Frechet, J. M. J., and Szoka, F. C. (2002). Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chemistry 13: 453-461.

    Article  CAS  Google Scholar 

  • Patil, S. D., Papadimitrakopoulos, F., and Burgess, D. J. (2004). Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coat-ings for inflammation control. Diabetes Technology & Therapeutics 6: 887-897.

    Article  CAS  Google Scholar 

  • Patri, A. K., Majoros, I. J., and Baker, J. R. (2002). Dendritic polymer macromolecular carriers for drug delivery. Current Opinion in Chemical Biology 6: 466-471.

    Article  PubMed  CAS  Google Scholar 

  • Patri, A. K., Kukowska-Latallo, J. F., and Baker, Jr., J. R. (2005). Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews 57: 2203-2214.

    Article  PubMed  CAS  Google Scholar 

  • de la Pena, A., Liu, P., and Derendorf, H. (2000). Microdialysis in peripheral tissues. Advanced Drug Delivery Reviews 45: 189-216.

    Article  PubMed  CAS  Google Scholar 

  • Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H. (2000). Hydrogels in pharma-ceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics 50: 27-46.

    Article  PubMed  CAS  Google Scholar 

  • Perugini, P., Genta, I., Conti, B., Modena, T., Cocchi, D., Zaffe, D., and Pavanetto, F. (2003). PLGA microspheres for oral osteopenia treatment: preliminary “in vitro”/“in vivo” evaluation. International Journal of Pharmaceutics 256: 153-160.

    Article  PubMed  CAS  Google Scholar 

  • Porter, C. J. and Charman, S. A. (2000). Lymphatic transport of proteins after subcutaneous administration. Journal of Pharmaceutical Sciences 89: 297-310.

    Article  PubMed  CAS  Google Scholar 

  • Ritger, P. L. and Peppas, N. A. (1987). A simple equation for description of solute release: I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release 5: 23-36.

    Article  CAS  Google Scholar 

  • Ruel-Gariepy, E., Leclair, G., Hildgen, P., Gupta, A., and Leroux, J. C. (2002). Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. Journal of Controlled Release 82: 373-383.

    Article  PubMed  CAS  Google Scholar 

  • Shabbits, J. A., Chiu, G. N., and Mayer, L. D. (2002). Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems. Journal of Controlled Release 84: 161-170.

    Article  PubMed  CAS  Google Scholar 

  • Shenderova, A., Burke, T. G., and Schwendeman, S. P. (1999). The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharmaceutical Research 16: 241-248.

    Article  PubMed  CAS  Google Scholar 

  • Siepmann, J. and Gopferich, A. (2001). Mathematical modeling of bioerodible, polymeric drug delivery systems. Advanced Drug Delivery Reviews 48: 229-247.

    Article  PubMed  CAS  Google Scholar 

  • Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N., and de Lima, M. C. (2004). On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews 56: 947-965.

    Article  PubMed  CAS  Google Scholar 

  • Takino, T., Konishi, K., Takakura, Y., and Hashida, M. (1994). Long circulating emulsion carrier systems for highly lipophilic drugs. Biological & Pharmaceutical Bulletin 17: 121-125.

    CAS  Google Scholar 

  • ten Tije, A. J., Verweij, J., Loos, W. J., and Sparreboom, A. (2003). Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clinical Pharmacokinetics 42: 665-685.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 4: 145-160.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V. P. and Levchenko, T. S. (2003). TAT-liposomes: a novel intracellular drug carrier. Current Protein & Peptide Science 4: 133-140.

    Article  CAS  Google Scholar 

  • Torchilin, V. P. and Lukyanov, A. N. (2003). Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discovery Today 8: 259-266.

    Article  PubMed  CAS  Google Scholar 

  • Twyman, L. J., Beezer, A. E., Esfand, R., Hardy, M. J., and Mitchell, J. C. (1999). The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Letters 40: 1743-1746.

    Article  CAS  Google Scholar 

  • Ueda, K., Ishida, M., Inoue, T., Fujimoto, M., Kawahara, Y., Sakaeda, T., and Iwakawa, S. (2001). Effect of injection volume on the pharmacokinetics of oil particles and incorpo-rated menatetrenone after intravenous injection as O/W lipid emulsions in rats. Journal of Drug Targeting 9: 353-360.

    PubMed  CAS  Google Scholar 

  • Ueda, K., Yamazaki, Y., Noto, H., Teshima, Y., Yamashita, C., Sakaeda, T., and Iwakawa, S. (2003). Effect of oxyethylene moieties in hydrogenated castor oil on the pharmacokinet-ics of menatetrenone incorporated in O/W lipid emulsions prepared with hydrogenated castor oil and soybean oil in rats. Journal of Drug Targeting 11: 37-43.

    Article  PubMed  CAS  Google Scholar 

  • van Dijkhuizen-Radersma, R., Wright, S. J., Taylor, L. M., John, B. A., de Groot, K., and Bezemer, J. M. (2004). In vitro/in vivo correlation for 14C-methylated lysozyme release from poly(ether-ester) microspheres. Pharmaceutical Research 21.

    Google Scholar 

  • Wang, F., Bronich, T. K., Kabanov, A. V., Rauh, R. D., and Roovers, J. (2005). Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chemistry 16: 397-405.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H. and Lopina, S. T. (2006). In vitro enzymatic stability of dendritic peptides. Journal of Biomedical Materials Research A 76: 398-407.

    Article  CAS  Google Scholar 

  • Yenice, I., Calis, S., Atilla, B., Kas, H. S., Ozalp, M., Ekizoglu, M., Bilgili, H., and Hin-cal, A. A. (2003). In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects. Journal of Microencapsulation 20: 705-717.

    Article  PubMed  CAS  Google Scholar 

  • Young, D., Farrell, C., and Shepard, T. (2005). In vitro/in vivo correlation for modified release injectable drug delivery systems. In Burgess, D. J. (ed.), Injectable Dispersed Systems: Formulation, Processing and Performance, Vol. 149, Taylor & Francis, Boca Raton, pp. 159-176.

    Google Scholar 

  • Zhong, H., Deng, Y., Wang, X., and Yang, B. (2005). Multivesicular liposome formulation for the sustained delivery of breviscapine. International Journal of Pharmaceutics 301: 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Zolnik, B. S. (2005). In vitro and in vivo release testing of control release parenteral microspheres. PhD Dissertation.

    Google Scholar 

  • Zolnik, B. S., Raton, J. L., and Burgess, D. J. (2005). Application of USP Apparatus 4 and in situ fiber optic analysis to microsphere release testing. Dissolution Technologies 12:11–14.

    CAS  Google Scholar 

  • Zolnik, B. S., Leary, P. E., and Burgess, D. J. (2006). Elevated temperature accelerated release testing of PLGA microspheres. Journal of Controlled Release 112: 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Zuidema, J., Kadir, F., Titulaer, H. A. C., and Oussoren, C. (1994). Release and absorption rates of intramuscularly and subcutaneously injected pharmaceuticals (II). International Journal of Pharmaceutics 105: 189–207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zolnik, B.S., Burgess, D.J. (2008). In Vitro–In Vivo Correlation on Parenteral Dosage Forms. In: Krishna, R., Yu, L. (eds) Biopharmaceutics Applications in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72379-2_11

Download citation

Publish with us

Policies and ethics