Skip to main content

Spatial and Temporal Dynamics of Attention

  • Chapter
  • First Online:
The Neuropsychology of Attention

Abstract

All natural environments have an inherent spatial and temporal organization. Spatial experience can be mapped onto a Cartesian coordinate system. Furthermore, there is a natural temporal order to all physical events and human experience. Though these tenets are intuitively evident and seem obvious today, the basis for people’s experience of space and time has been one of the enduring problems for philosophers and scientists throughout the ages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, J., & Held, R. (1975). Comparison of visually guided reaching in normal and deprived infant monkeys. Journal of Experimental Psychology. Animal Behavior Processes, 1(4), 298–308.

    PubMed  Google Scholar 

  2. Daw, N. W., & Wyatt, H. J. (1974). Raising rabbits in a moving visual environment: An attempt to modify directional sensitivity in the retina. The Journal of Physiology, 240(2), 309–330.

    PubMed  Google Scholar 

  3. Held, R., & Bossom, J. (1961). Neonatal deprivation and adult rearrangement: Complementary techniques for analyzing plastic sensory-motor coordinations. Journal of Comparative and Physiological Psychology, 54, 33–37.

    PubMed  Google Scholar 

  4. Held, R., & White, B. (1959). Sensory deprivation and visual speed: An analysis. Science, 130(3379), 861–862.

    PubMed  Google Scholar 

  5. Hubel, D. H. (1978). Effects of deprivation on the visual cortex of cat and monkey. Harvey Lectures, 72, 1–51.

    PubMed  Google Scholar 

  6. Wiesel, T. N., & Hubel, D. H. (1974). Ordered arrangement of orientation columns in monkeys lacking visual experience. The Journal of Comparative Neurology, 158(3), 307–318.

    PubMed  Google Scholar 

  7. Li, Y., Van Hooser, S. D., Mazurek, M., White, L. E., & Fitzpatrick, D. (2008). Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature, 456(7224), 952–956.

    PubMed  Google Scholar 

  8. Razak, K. A., & Pallas, S. L. (2007). Inhibitory plasticity facilitates recovery of stimulus velocity tuning in the superior colliculus after chronic NMDA receptor blockade. Journal of Neuroscience, 27(27), 7275–7283.

    PubMed  Google Scholar 

  9. Forster, B., Eardley, A. F., & Eimer, M. (2007). Altered tactile spatial attention in the early blind. Brain Research, 1131(1), 149–154.

    PubMed  Google Scholar 

  10. Li, Y., Fitzpatrick, D., & White, L. E. (2006). The development of direction selectivity in ferret visual cortex requires early visual experience. Nature Neuroscience, 9(5), 676–681.

    PubMed  Google Scholar 

  11. Motter, B. C., & Mountcastle, V. B. (1981). The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience, 1, 3–26.

    PubMed  Google Scholar 

  12. Mountcastle, V. (1978). Brain mechanisms for directed attention. Journal of the Royal Society of Medicine, 71, 14–27.

    PubMed  Google Scholar 

  13. Mountcastle, V., Motter, B. C., Steinmetz, M. A., & Duffy, C. J. (1984). Looking and seeing: Visual functions of the parietal lobe. In G. M. Edelman, W. M. Cowan, & W. E. Gall (Eds.), Dynamic aspects of neocortical functions (pp. 159–193). New York: Wiley.

    Google Scholar 

  14. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., & Acuna, C. (1975). Posterior parietal association cortex of the monkey: Command function from operations within extrapersonal space. Journal of Neurophysiology, 38, 871–908.

    PubMed  Google Scholar 

  15. Mountcastle, V. B. (1979). An organizing principle for cerebral function: The unit module and the distributed system. In F. O. Schmitt & F. G. Worden (Eds.), The neurosciences (pp. 21–42). Cambridge, MA: MIT Press.

    Google Scholar 

  16. Jeannerod, M. (1983). How do we direct our actions in space? In A. Hein & M. Jeannerod (Eds.), Spatially oriented behavior (pp. 1–14). New York: Springer.

    Google Scholar 

  17. Perenin, M. T., & Jeannerod, M. (1978). Visual function within the hemianopic field following early cerebral hemidecortication in man—I. Spatial localization. Neuropsychologia, 16(1), 1–13.

    PubMed  Google Scholar 

  18. Perenin, M. T., Jeannerod, M., & Prablanc, C. (1977). Spatial localization with paralyzed eye muscles. Ophthalmologica, 175(4), 206–214.

    PubMed  Google Scholar 

  19. Hallett, P. E., & Lightstone, A. D. (1976). Saccadic eye movement towards stimuli triggered by prior saccades. Vision Research, 16, 99–106.

    PubMed  Google Scholar 

  20. Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psychology, 56, 872–876.

    PubMed  Google Scholar 

  21. Hein, A., & Diamond, R. M. (1971). Contrasting development of visually triggered and guided movements in kittens with respect to interocular and interlimb equivalence. Journal of Comparative and Physiological Psychology, 76(2), 219–224.

    PubMed  Google Scholar 

  22. Hein, A., Vital-Durand, F., Salinger, W., & Diamond, R. (1979). Eye movements initiate visual-motor development in the cat. Science, 204(4399), 1321–1322.

    PubMed  Google Scholar 

  23. Grusser, O.-J. (1983). Multimodal structure of the extrapersonal space. In A. Hein & M. Jeannerod (Eds.), Spatially oriented behavior (pp. 327–352). New York: Springer.

    Google Scholar 

  24. Hein, A., Held, R., & Gower, E. C. (1970). Development and segmentation of visually controlled movement by selective exposure during rearing. Journal of Comparative and Physiological Psychology, 73(2), 181–187.

    PubMed  Google Scholar 

  25. Hein, A., & Held, R. (1967). Dissociation of the visual placing response into elicited and guided components. Science, 158(3799), 390–392.

    PubMed  Google Scholar 

  26. Hein, A., & Diamond, R. M. (1972). Locomotory space as a prerequisite for acquiring visually guided reaching in kittens. Journal of Comparative and Physiological Psychology, 81(3), 394–398.

    PubMed  Google Scholar 

  27. Miles, F. A., & Evarts, E. V. (1979). Concepts of motor organization. Annual Review of Psychology, 43, 327–362.

    Google Scholar 

  28. Gottschalk, C., Grusser, O.-J., & Lindau, M. (1978). Tracking movement of the eyes elicited by auditory stimuli at a constant angular velocity. Pflugers Archiv European Journal of Physiology, 377, 46.

    Google Scholar 

  29. Neisser, U., & Becklen, R. (1975). Selective looking: Attending to visually-specified events. Cognitive Psychology, 7, 480–494.

    Google Scholar 

  30. Stoffregen, T. A., Baldwin, C. A., & Flynn, S. B. (1993). Noticing of unexpected events by adults with and without mental retardation. American Journal on Mental Retardation, 98(2), 273–284.

    PubMed  Google Scholar 

  31. Stoffregen, T. A., & Becklen, R. C. (1989). Dual attention to dynamically structured naturalistic events. Perceptual and Motor Skills, 69(3 Pt 2), 1187–1201.

    PubMed  Google Scholar 

  32. Becklen, R., & Cervone, D. (1983). Selective looking and the noticing of unexpected events. Memory and Cognition, 11(6), 601–608.

    PubMed  Google Scholar 

  33. Bahrick, L. E., Walker, A. S., & Neisser, U. (1981). Selective looking by infants. Cognitive Psychology, 13(3), 377–390.

    PubMed  Google Scholar 

  34. Sperling, G., & Melchner, M. J. (1978). Visual search, visual attention, and the attention operating characteristic. In J. Requin (Ed.), Attention and performance VII (pp. 675–686). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  35. Hughes, H. C., & Zimba, L. D. (1987). Natural boundaries for the spatial spread of directed visual attention. Neuropsychologia, 25(IA), 5–18.

    PubMed  Google Scholar 

  36. Gawryszewski, L. D. G., Riggio, L., Rizzolatti, G., & Umilta, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25IA, 19–29.

    Google Scholar 

  37. Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  38. Mountcastle, V. B., Anderson, R. A., & Motter, B. C. (1981). The influence of attentive fixation upon the excitability of the light sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 1, 1218–1235.

    PubMed  Google Scholar 

  39. Tassinari, G., Aglioti, S., Chelazzi, L., Marzi, C. A., & Berlucchi, G. (1987). Distribution in the visual field of the costs of voluntarily allocated attention and of the inhibitory after-effects of covert orienting. Neuropsychologia, 25(1A), 55–71.

    PubMed  Google Scholar 

  40. Tassinari, G., Aglioti, S., Pallini, R., Berlucchi, G., & Rossi, G. F. (1994). Interhemispheric integration of simple visuomotor responses in patients with partial callosal defects. Behavioural Brain Research, 64(1–2), 141–149.

    PubMed  Google Scholar 

  41. Tassinari, G., & Berlucchi, G. (1993). Sensory and attentional components of slowing of manual reaction time to non-fixated visual targets by ipsilateral primes. Vision Research, 33(11), 1525–1534.

    PubMed  Google Scholar 

  42. Tassinari, G., & Berlucchi, G. (1995). Covert orienting to non-informative cues: Reaction time studies. Behavioural Brain Research, 71(1–2), 101–112.

    PubMed  Google Scholar 

  43. Tassinari, G., Biscaldi, M., Marzi, C. A., & Berlucchi, G. (1989). Ipsilateral inhibition and contralateral facilitation of simple reaction time to non-foveal visual targets from non-informative visual cues. Acta Psychologica, 70(3), 267–291.

    PubMed  Google Scholar 

  44. Tassinari, G., & Campara, D. (1996). Consequences of covert orienting to non-informative stimuli of different modalities: A unitary mechanism? Neuropsychologia, 34(3), 235–245.

    PubMed  Google Scholar 

  45. Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1-A), 31–40.

    PubMed  Google Scholar 

  46. Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and selective attention. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance 15: Conscious and nonconscious information processing (pp. 232–265). Cambridge: The MIT Press.

    Google Scholar 

  47. Kumada, T. (2001). Feature-based control of attention: Evidence for two forms of dimension weighting. Perception & Psychophysics, 63(4), 698–708.

    Google Scholar 

  48. Viswanathan, L., & Mingolla, E. (2002). Dynamics of attention in depth: Evidence from multi-element tracking. Perception, 31(12), 1415–1437.

    PubMed  Google Scholar 

  49. Weger, U. W., & Pratt, J. (2008). Time flies like an arrow: Space-time compatibility effects suggest the use of a mental timeline. Psychonomic Bulletin and Review, 15(2), 426–430.

    PubMed  Google Scholar 

  50. Kristjansson, A. (2006). Simultaneous priming along multiple feature dimensions in a visual search task. Vision Research, 46(16), 2554–2570.

    PubMed  Google Scholar 

  51. Lachter, J., Remington, R. W., & Ruthruff, E. (2009). Space, object, and task selection. Attention, Perception, & Psychophysics, 71(5), 995–1014.

    Google Scholar 

  52. Sally, S. L., Vidnyansky, Z., & Papathomas, T. V. (2009). Feature-based attentional modulation increases with stimulus separation in divided-attention tasks. Spatial Vision, 22(6), 529–553.

    PubMed  Google Scholar 

  53. Wolfe, B., Rushmore, R. J., & Valero-Cabre, A. (2010). Coping with spatial attention in real space: A low-cost portable testing system for the investigation of visuo-spatial processing in the human brain. Journal of Neuroscience Methods, 187(2), 190–198.

    PubMed  Google Scholar 

  54. Chiu, Y. C., Esterman, M., Han, Y., Rosen, H., & Yantis, S. (2011). Decoding task-based attentional modulation during face categorization. Journal of Cognitive Neuroscience, 23(5), 1198–1204.

    PubMed  Google Scholar 

  55. Hilhorst, J., van Schooneveld, M. M., Wang, J., et al. (2012). Three-dimensional structure and defects in colloidal photonic crystals revealed by tomographic scanning transmission X-ray microscopy. Langmuir, 28(7), 3614–3620.

    PubMed  Google Scholar 

  56. Mennemeier, M., Wertman, E., & Heilman, K. M. (1992). Neglect of near peripersonal space. Evidence for multidirectional attentional systems in humans. Brain, 115(Pt 1), 37–50.

    PubMed  Google Scholar 

  57. Maylor, E., & Hockey, R. (1987). Effects of repetition on the facilitatory and inhibitory components of orienting in visual space. Neuropsychologia, 25(1), 41–54.

    PubMed  Google Scholar 

  58. Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology. Human Perception and Performance, 11(6), 777–787.

    PubMed  Google Scholar 

  59. Lambert, A., Spencer, M., & Hockey, R. (1991). Peripheral visual changes and spatial attention. Acta Psychologica, 76(2), 149–163.

    PubMed  Google Scholar 

  60. Maylor, E. A., Allison, S., & Wing, A. M. (2001). Effects of spatial and nonspatial cognitive activity on postural stability. British Journal of Psychology, 92(Pt 2), 319–338.

    Google Scholar 

  61. Dodd, M. D., & Shumborski, S. (2009). Examining the influence of action on spatial working memory: The importance of selection. Quarterly Journal of Experimental Psychology, 62(6), 1236–1247.

    Google Scholar 

  62. Dodd, M. D., & Pratt, J. (2007). Rapid onset and long-term inhibition of return in the multiple cuing paradigm. Psychological Research, 71(5), 576–582.

    PubMed  Google Scholar 

  63. Dodd, M. D., & Pratt, J. (2007). The effect of previous trial type on inhibition of return. Psychological Research, 71(4), 411–417.

    PubMed  Google Scholar 

  64. Dodd, M. D., Castel, A. D., & Pratt, J. (2003). Inhibition of return with rapid serial shifts of attention: Implications for memory and visual search. Perception & Psychophysics, 65(7), 1126–1135.

    Google Scholar 

  65. Simmons, J. A. (1989). A view of the world through the bat’s ear: The formation of acoustic images in echolocation. Cognition, 33(1–2), 155–199.

    PubMed  Google Scholar 

  66. Simmons, J. A., Lavender, W. A., Lavender, B. A., et al. (1974). Target structure and echo spectral discrimination by echolocating bats. Science, 186(4169), 1130–1132.

    PubMed  Google Scholar 

  67. Simmons, J. A. (1971). Echolocation in bats: Signal processing of echoes for target range. Science, 171(3974), 925–928.

    PubMed  Google Scholar 

  68. Bermúdez, J. (1998). The body and the self. Cambridge, MA: MIT Press.

    Google Scholar 

  69. Hubel, D. H. (1963). The visual cortex of the brain. Scientific American, 209, 54–62.

    PubMed  Google Scholar 

  70. Hubel, D. H. (1963). Integrative processes in central visual pathways of the cat. Journal of the Optical Society of America, 53, 58–66.

    PubMed  Google Scholar 

  71. Hubel, D., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195, 215–243.

    PubMed  Google Scholar 

  72. Mishkin, M., Ungerleiter, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience, 6, 414–417.

    Google Scholar 

  73. Ungerleider, L., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  74. Steinmetz, M. A., Motter, B. C., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field. Journal of Neuroscience, 7(1), 177–191.

    PubMed  Google Scholar 

  75. Motter, B. C., Steinmetz, M. A., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis. Journal of Neuroscience, 7(1), 154–176.

    PubMed  Google Scholar 

  76. Mountcastle, V. B., Motter, B. C., Steinmetz, M. A., & Sestokas, A. K. (1987). Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. Journal of Neuroscience, 7(7), 2239–2255.

    PubMed  Google Scholar 

  77. Kusunoki, M., & Goldberg, M. E. (2003). The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. Journal of Neurophysiology, 89(3), 1519–1527.

    PubMed  Google Scholar 

  78. Zhang, T., & Britten, K. H. (2011). Parietal area VIP causally influences heading perception during pursuit eye movements. Journal of Neuroscience, 31(7), 2569–2575.

    PubMed  Google Scholar 

  79. Zhang, T., & Britten, K. H. (2010). The responses of VIP neurons are sufficiently sensitive to support heading judgments. Journal of Neurophysiology, 103(4), 1865–1873.

    PubMed  Google Scholar 

  80. Zhang, T., & Britten, K. H. (2004). Clustering of selectivity for optic flow in the ventral intraparietal area. Neuroreport, 15(12), 1941–1945.

    PubMed  Google Scholar 

  81. Zhang, T., Heuer, H. W., & Britten, K. H. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron, 42(6), 993–1001.

    PubMed  Google Scholar 

  82. Gobbini, M. I., & Haxby, J. V. (2006). Neural response to the visual familiarity of faces. Brain Research Bulletin, 71(1–3), 76–82.

    PubMed  Google Scholar 

  83. Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology, 83(5), 2580–2601.

    PubMed  Google Scholar 

  84. Sakata, H., Taira, M., Kusunoki, M., Murata, A., Tanaka, Y., & Tsutsui, K. (1998). Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1363–1373.

    PubMed  Google Scholar 

  85. Murata, A., Gallese, V., Kaseda, M., & Sakata, H. (1996). Parietal neurons related to memory-guided hand manipulation. Journal of Neurophysiology, 75(5), 2180–2186.

    PubMed  Google Scholar 

  86. Gallese, V., Murata, A., Kaseda, M., Niki, N., & Sakata, H. (1994). Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport, 5(12), 1525–1529.

    PubMed  Google Scholar 

  87. Pesaran, B., Nelson, M. J., & Andersen, R. A. (2010). A relative position code for saccades in dorsal premotor cortex. Journal of Neuroscience, 30(19), 6527–6537.

    PubMed  Google Scholar 

  88. Pesaran, B., Nelson, M. J., & Andersen, R. A. (2008). Free choice activates a decision circuit between frontal and parietal cortex. Nature, 453(7193), 406–409.

    PubMed  Google Scholar 

  89. Pesaran, B., Nelson, M. J., & Andersen, R. A. (2006). Dorsal premotor neurons encode the relative position of the hand, eye, and goal during reach planning. Neuron, 51(1), 125–134.

    PubMed  Google Scholar 

  90. Avillac, M., Deneve, S., Olivier, E., Pouget, A., & Duhamel, J. R. (2005). Reference frames for representing visual and tactile locations in parietal cortex. Nature Neuroscience, 8(7), 941–949.

    PubMed  Google Scholar 

  91. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662–667.

    PubMed  Google Scholar 

  92. Fogassi, L., Gallese, V., Buccino, G., Craighero, L., Fadiga, L., & Rizzolatti, G. (2001). Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain, 124(Pt 3), 571–586.

    PubMed  Google Scholar 

  93. Buccino, G., Binkofski, F., Fink, G. R., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13(2), 400–404.

    PubMed  Google Scholar 

  94. Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (2000). Visuomotor neurons: Ambiguity of the discharge or ‘motor’ perception? International Journal of Psychophysiology, 35(2–3), 165–177.

    PubMed  Google Scholar 

  95. Rizzolatti, G., Fogassi, L., & Gallese, V. (1997). Parietal cortex: From sight to action. Current Opinion in Neurobiology, 7(4), 562–567.

    PubMed  Google Scholar 

  96. Gallivan, J. P., McLean, D. A., Smith, F. W., & Culham, J. C. (2011). Decoding effector-dependent and effector-independent movement intentions from human parieto-frontal brain activity. Journal of Neuroscience, 31(47), 17149–17168.

    PubMed  Google Scholar 

  97. Gallivan, J. P., McLean, A., & Culham, J. C. (2011). Neuroimaging reveals enhanced activation in a reach-selective brain area for objects located within participants’ typical hand workspaces. Neuropsychologia, 49(13), 3710–3721.

    PubMed  Google Scholar 

  98. Gallivan, J. P., McLean, D. A., Valyear, K. F., Pettypiece, C. E., & Culham, J. C. (2011). Decoding action intentions from preparatory brain activity in human parieto-frontal networks. Journal of Neuroscience, 31(26), 9599–9610.

    PubMed  Google Scholar 

  99. Gallivan, J. P., Cavina-Pratesi, C., & Culham, J. C. (2009). Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. Journal of Neuroscience, 29(14), 4381–4391.

    PubMed  Google Scholar 

  100. Culham, J. C., & Valyear, K. F. (2006). Human parietal cortex in action. Current Opinion in Neurobiology, 16(2), 205–212.

    PubMed  Google Scholar 

  101. Culham, J. C., Cavina-Pratesi, C., & Singhal, A. (2006). The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia, 44(13), 2668–2684.

    PubMed  Google Scholar 

  102. Medendorp, W. P., Goltz, H. C., Crawford, J. D., & Vilis, T. (2005). Integration of target and effector information in human posterior parietal cortex for the planning of action. Journal of Neurophysiology, 93(2), 954–962.

    PubMed  Google Scholar 

  103. Medendorp, W. P., Goltz, H. C., Vilis, T., & Crawford, J. D. (2003). Gaze-centered updating of visual space in human parietal cortex. Journal of Neuroscience, 23(15), 6209–6214.

    PubMed  Google Scholar 

  104. Heilman, K. M., Schwartz, H. D., & Watson, R. T. (1978). Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology, 28(3), 229–232.

    PubMed  Google Scholar 

  105. Heilman, K. M., & Valenstein, E. (1979). Mechanisms underlying hemispatial neglect. Annals of Neurology, 5(2), 166–170.

    PubMed  Google Scholar 

  106. Heilman, K. M., Valenstein, E., & Watson, R. T. (2000). Neglect and related disorders. Seminars in Neurology, 20(4), 463–470.

    PubMed  Google Scholar 

  107. Heilman, K. M., & Watson, R. T. (1977). Mechanisms underlying the unilateral neglect syndrome. Advances in Neurology, 18, 93–106.

    PubMed  Google Scholar 

  108. Heilman, K. M., & Valenstein, E. (Eds.). (1985). Clinical neuropsychology (2nd ed.). New York, Oxford: Oxford University Press.

    Google Scholar 

  109. Hoffmann, K. P., & Schoppmann, A. (1981). A quantitative analysis of the direction-specific response of neurons in the cat’s nucleus of the optic tract. Experimental Brain Research, 42(2), 146–157.

    PubMed  Google Scholar 

  110. Montarolo, P. G., Precht, W., & Strata, P. (1981). Functional organization of the mechanisms subserving the optokinetic nystagmus in the cat. Neuroscience, 6(2), 231–246.

    PubMed  Google Scholar 

  111. Precht, W., Montarolo, P. G., & Strata, P. (1980). The role of the crossed and uncrossed retinal fibres in mediating the horizontal optokinetic nystagmus in the cat. Neuroscience Letters, 17(1–2), 39–42.

    PubMed  Google Scholar 

  112. Mustari, M. J., Fuchs, A. F., & Pong, M. (1997). Response properties of pretectal omnidirectional pause neurons in the behaving primate. Journal of Neurophysiology, 77(1), 116–125.

    PubMed  Google Scholar 

  113. Fuchs, A. F., Mustari, M. J., Robinson, F. R., & Kaneko, C. R. (1992). Visual signals in the nucleus of the optic tract and their brain stem destinations. Annals of the New York Academy of Sciences, 656, 266–276.

    PubMed  Google Scholar 

  114. Mustari, M. J., & Fuchs, A. F. (1990). Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. Journal of Neurophysiology, 64(1), 77–90.

    PubMed  Google Scholar 

  115. Miller, A. M., Miller, R. B., Obermeyer, W. H., Behan, M., & Benca, R. M. (1999). The pretectum mediates rapid eye movement sleep regulation by light. Behavioral Neuroscience, 113(4), 755–765.

    PubMed  Google Scholar 

  116. Schlag, J., & Schlag-Rey, M. (1983). Interface of visual input and oculomotor command for directing the gaze on target. In A. Hein & M. Jeannerod (Eds.), Spatially oriented behavior (pp. 87–104). New York: Springer.

    Google Scholar 

  117. Schlag, J., & Schlag-Rey, M. (1986). Role of the central thalamus in gaze control. Progress in Brain Research, 64, 191–201.

    PubMed  Google Scholar 

  118. Schlag-Rey, M., & Schlag, J. (1981). Eye movement-related neuronal activity in the central thalamus of monkeys. In A. Fuchs & W. Becker (Eds.), Progress in oculomotor research. New York: Elsevier/North-Holland.

    Google Scholar 

  119. Harting, J. K., Huerta, M. F., Frankfurter, A. J., Strominger, N. L., & Royce, G. J. (1980). Ascending pathways from the monkey superior colliculus: An autoradiographic analysis. The Journal of Comparative Neurology, 192, 853–882.

    PubMed  Google Scholar 

  120. Sparks, D., & Mays, L. E. (1980). Movement of saccade-related burst neurons in the monkey superior colliculus. Brain Research, 190, 39–50.

    PubMed  Google Scholar 

  121. Wang, Z., Kruijne, W., & Theeuwes, J. (2012). Lateral interactions in the superior colliculus produce saccade deviation in a neural field model. Vision Research, 62, 66–74.

    PubMed  Google Scholar 

  122. Katnani, H. A., van Opstal, A. J., & Gandhi, N. J. (2012). A test of spatial temporal decoding mechanisms in the superior colliculus. Journal of Neurophysiology, 107(9), 2442–2452.

    PubMed  Google Scholar 

  123. Hafed, Z. M., & Krauzlis, R. J. (2012). Similarity of superior colliculus involvement in microsaccade and saccade generation. Journal of Neurophysiology, 107(7), 1904–1916.

    PubMed  Google Scholar 

  124. White, B. J., Theeuwes, J., & Munoz, D. P. (2012). Interaction between visual- and goal-related neuronal signals on the trajectories of saccadic eye movements. Journal of Cognitive Neuroscience, 24(3), 707–717.

    PubMed  Google Scholar 

  125. Deconinck, F. J., van Polanen, V., Savelsbergh, G. J., & Bennett, S. J. (2011). The relative timing between eye and hand in rapid sequential pointing is affected by time pressure, but not by advance knowledge. Experimental Brain Research, 213(1), 99–109.

    PubMed  Google Scholar 

  126. Bisley, J. W. (2011). The neural basis of visual attention. The Journal of Physiology, 589(Pt 1), 49–57.

    PubMed  Google Scholar 

  127. Reuter-Lorenz, P. A., Herter, T. M., & Guitton, D. (2011). Control of reflexive saccades following hemispherectomy. Journal of Cognitive Neuroscience, 23(6), 1368–1378.

    PubMed  Google Scholar 

  128. Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256–271.

    PubMed  Google Scholar 

  129. Stuphorn, V., Bauswein, E., & Hoffmann, K. P. (2000). Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. Journal of Neurophysiology, 83(3), 1283–1299.

    PubMed  Google Scholar 

  130. Horwitz, G. D., & Newsome, W. T. (1999). Separate signals for target selection and movement specification in the superior colliculus. Science, 284(5417), 1158–1161.

    PubMed  Google Scholar 

  131. Dorris, M. C., Pare, M., & Munoz, D. P. (1997). Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. Journal of Neuroscience, 17(21), 8566–8579.

    PubMed  Google Scholar 

  132. Basso, M. A., & Wurtz, R. H. (1997). Modulation of neuronal activity by target uncertainty. Nature, 389(6646), 66–69.

    PubMed  Google Scholar 

  133. May, P. J., Sun, W., & Hall, W. C. (1997). Reciprocal connections between the zona incerta and the pretectum and superior colliculus of the cat. Neuroscience, 77(4), 1091–1114.

    PubMed  Google Scholar 

  134. Munoz, D. P., Waitzman, D. M., & Wurtz, R. H. (1996). Activity of neurons in monkey superior colliculus during interrupted saccades. Journal of Neurophysiology, 75(6), 2562–2580.

    PubMed  Google Scholar 

  135. Van Opstal, A. J., & Frens, M. A. (1996). Task-dependence of saccade-related activity in monkey superior solliculus: Implications for models of the saccadic system. Progress in Brain Research, 112, 179–194.

    PubMed  Google Scholar 

  136. Walker, M. F., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Journal of Neurophysiology, 73(5), 1988–2003.

    PubMed  Google Scholar 

  137. Schall, J. D. (1995). Neural basis of saccade target selection. Reviews in the Neurosciences, 6(1), 63–85.

    PubMed  Google Scholar 

  138. Pare, M., & Guitton, D. (1994). The fixation area of the cat superior colliculus: Effects of electrical stimulation and direct connection with brainstem omnipause neurons. Experimental Brain Research, 101(1), 109–122.

    PubMed  Google Scholar 

  139. Munoz, D. P., & Wurtz, R. H. (1993). Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. Journal of Neurophysiology, 70(2), 576–589.

    PubMed  Google Scholar 

  140. Sparks, D. L. (1993). Are gaze shifts controlled by a ‘moving hill’ of activity in the superior colliculus? Trends in Neurosciences, 16(6), 214–218.

    PubMed  Google Scholar 

  141. Hepp, K., Van Opstal, A. J., Straumann, D., Hess, B. J., & Henn, V. (1993). Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map. Journal of Neurophysiology, 69(3), 965–979.

    PubMed  Google Scholar 

  142. Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. Journal of Neurophysiology, 53(1), 266–291.

    PubMed  Google Scholar 

  143. Dean, P., & Redgrave, P. (1984). The superior colliculus and visual neglect in rat and hamster. I. Behavioural evidence. Brain Research, 320(2–3), 129–141.

    PubMed  Google Scholar 

  144. Goldberg, M. E., & Robinson, D. L. (1977). Visual responses of neurons in inferior parietal lobule: The physiological substrate of attention and neglect. Neurology, 27, 350–362.

    Google Scholar 

  145. Goldberg, M. E., & Robinson, D. L. (1980). The significance of enhanced visual responses in posterior parietal cortex. Behavior and Brain Sciences, 3, 503–505.

    Google Scholar 

  146. Goldberg, M. E., & Bushnell, M. D. (1981). Behavioral enhancement of visual response in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. Journal of Neurophysiology, 46, 773–787.

    PubMed  Google Scholar 

  147. Foster, D. J., Morris, R. G., & Dayan, P. (2000). A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus, 10(1), 1–16.

    PubMed  Google Scholar 

  148. Foster, T. C., Castro, C. A., & McNaughton, B. L. (1989). Spatial selectivity of rat hippocampal neurons: Dependence on preparedness for movement. Science, 244(4912), 1580–1582.

    PubMed  Google Scholar 

  149. Welberg, L. (2012). Spatial processing: Parietal entorhinal cortex cells in navigation. Nature Reviews Neuroscience, 13(4), 223.

    Google Scholar 

  150. Welberg, L. (2012). Learning and memory: Channelling spatial information. Nature Reviews Neuroscience, 13(1), 4–5.

    Google Scholar 

  151. Heilman, K. M., Watson, R. T., Valenstein, E., & Goldberg, M. E. (1988). Attention: Behavior and neural mechanisms. Attention, II, 461–481.

    Google Scholar 

  152. Wurtz, R. H., & Goldberg, M. E. (1972). Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. Journal of Neurophysiology, 35(4), 587–596.

    PubMed  Google Scholar 

  153. Wurtz, R. H., Goldberg, M. E., & Robinson, D. L. (1982). Brain mechanisms of visual attention. Scientific American, 246(6), 124–135.

    PubMed  Google Scholar 

  154. Wurtz, R. H., & Mohler, C. W. (1976). Enhancement of visual responses in monkey striate cortex and frontal eye fields. Journal of Neurophysiology, 39(4), 766–772.

    PubMed  Google Scholar 

  155. Wurtz, R. H., Richmond, B. J., & Judge, S. J. (1980). Vision during saccadic eye movements. III. Visual interactions in monkey superior colliculus. Journal of Neurophysiology, 43(4), 1168–1181.

    PubMed  Google Scholar 

  156. Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46(4), 755–772.

    PubMed  Google Scholar 

  157. Goldberg, M. E., Bisley, J. W., Powell, K. D., & Gottlieb, J. (2006). Saccades, salience and attention: The role of the lateral intraparietal area in visual behavior. Progress in Brain Research, 155, 157–175.

    PubMed  Google Scholar 

  158. Goldberg, M. E., Bushnell, M. C., & Bruce, C. J. (1986). The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Experimental Brain Research, 61(3), 579–584.

    Google Scholar 

  159. Bisley, J. W., & Goldberg, M. E. (2003). The role of the parietal cortex in the neural processing of saccadic eye movements. Advances in Neurology, 93, 141–157.

    PubMed  Google Scholar 

  160. Goldberg, M. E. (2007). Studying the visual system in awake monkeys: Two classic papers by Robert H. Wurtz. Journal of Neurophysiology, 98(5), 2495–2496.

    PubMed  Google Scholar 

  161. Goldberg, M. E., & Segraves, M. A. (1989). The visual and frontal cortices. Reviews of Oculomotor Research, 3, 283–313.

    PubMed  Google Scholar 

  162. Goldberg, M. E., & Segraves, M. A. (1990). The role of the frontal eye field and its corticotectal projection in the generation of eye movements. Research Publications: Association for Research in Nervous and Mental Disease, 67, 195–209.

    Google Scholar 

  163. Segraves, M. A., & Goldberg, M. E. (1987). Functional properties of corticotectal neurons in the monkey’s frontal eye field. Journal of Neurophysiology, 58(6), 1387–1419.

    PubMed  Google Scholar 

  164. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.

    Google Scholar 

  165. Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychology Review, 91(2), 269–276.

    Google Scholar 

  166. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.

    Google Scholar 

  167. Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–1388.

    PubMed  Google Scholar 

  168. Johnson, W., & Dark, V. J. (1986). Selective attention. Annual Review of Psychology, 37, 43–75.

    Google Scholar 

  169. Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology. Human Perception and Performance, 8(2), 194–214.

    PubMed  Google Scholar 

  170. Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology A, 40(2), 201–237.

    Google Scholar 

  171. Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology. Human Perception and Performance, 17(3), 652–676.

    PubMed  Google Scholar 

  172. Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1295–1306.

    PubMed  Google Scholar 

  173. Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology. Human Perception and Performance, 10(1), 12–31.

    PubMed  Google Scholar 

  174. Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology. Human Perception and Performance, 16(3), 459–478.

    PubMed  Google Scholar 

  175. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    PubMed  Google Scholar 

  176. Kaplan, R. F., Verfaellie, M., DeWitt, L. D., & Caplan, L. R. (1990). Effects of changes in stimulus contingency on visual extinction. Neurology, 40(8), 1299–1301.

    PubMed  Google Scholar 

  177. Erez, A. B., Katz, N., Ring, H., & Soroker, N. (2009). Assessment of spatial neglect using computerised feature and conjunction visual search tasks. Neuropsychological Rehabilitation, 19(5), 677–695.

    PubMed  Google Scholar 

  178. Keller, I., Lefin-Rank, G., Losch, J., & Kerkhoff, G. (2009). Combination of pursuit eye movement training with prism adaptation and arm movements in neglect therapy: A pilot study. Neurorehabilitation and Neural Repair, 23(1), 58–66.

    PubMed  Google Scholar 

  179. Sireteanu, R., Goebel, C., Goertz, R., & Wandert, T. (2006). Do children with developmental dyslexia show a selective visual attention deficit? Strabismus, 14(2), 85–93.

    PubMed  Google Scholar 

  180. Sprenger, A., Kompf, D., & Heide, W. (2002). Visual search in patients with left visual hemineglect. Progress in Brain Research, 140, 395–416.

    PubMed  Google Scholar 

  181. Van Vleet, T. M., & Robertson, L. C. (2009). Implicit representation and explicit detection of features in patients with hemispatial neglect. Brain, 132(Pt 7), 1889–1897.

    PubMed  Google Scholar 

  182. Wilkinson, D., Ko, P., Milberg, W., & McGlinchey, R. (2008). Impaired search for orientation but not color in hemi-spatial neglect. Cortex, 44(1), 68–78.

    PubMed  Google Scholar 

  183. Laeng, B., Brennen, T., & Espeseth, T. (2002). Fast responses to neglected targets in visual search reflect pre-attentive processes: An exploration of response times in visual neglect. Neuropsychologia, 40(9), 1622–1636.

    PubMed  Google Scholar 

  184. Deutsch, J., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 80–90.

    PubMed  Google Scholar 

  185. Allport, G. (1937). The functional anatomy of motives. The American Journal of Psychology, 50, 141–156.

    Google Scholar 

  186. Neumann, O., van der Heijden, A. H., & Allport, D. A. (1986). Visual selective attention: Introductory remarks. Psychological Research, 48(4), 185–188.

    PubMed  Google Scholar 

  187. Shallice, T., Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1405–1411; discussion 1411–1402.

    Google Scholar 

  188. Michon, J. A., & Jackson, J. L. (1984). Attentional effort and cognitive strategies in the processing of temporal information. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 298–321). New York: The New York Academy of Sciences.

    Google Scholar 

  189. Jones, M. R., Boltz, M. G., & Klein, J. M. (1993). Expected endings and judged duration. Memory and Cognition, 21(5), 646–665.

    PubMed  Google Scholar 

  190. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychology Review, 96(3), 459–491.

    Google Scholar 

  191. Ornstein, R. E. (1969). On the experience of time. Harmondsworth, England: Penguin.

    Google Scholar 

  192. Aschoff, J. (1981). Biological rhythms. In J. Aschoff (Ed.), Handbook of behavioral neurobiology (Vol. 4). New York: Plenum.

    Google Scholar 

  193. Aschoff, J. (1984). Circadian timing. Timing and time perception. Annals of the New York Academy of Sciences, 423, 442–468.

    PubMed  Google Scholar 

  194. Albers, H. E., Lydic, R., Gander, P. H., & Moore-Ede, M. C. (1984). Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Research, 300, 275–284.

    PubMed  Google Scholar 

  195. Lydic, R., Albers, H. E., Tepper, B., & Moore-Ede, M. C. (1982). Three-dimensional structure of the mammalian suprachiasmatic nuclei: A comparative study of five species. The Journal of Comparative Neurology, 204, 225–237.

    PubMed  Google Scholar 

  196. Kristofferson, A. B. (1980). A quantal step function in duration discrimination. Perceptual Psychophysiology, 27(4), 300–306.

    Google Scholar 

  197. Kristofferson, A. B. (1984). Quantal and deterministic timing in human duration discrimination. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 3–15). New York: The New York Academy of Sciences.

    Google Scholar 

  198. Pittendrigh, C. (1981). Circadian systems: Entrainment. In J. Aschoff (Ed.), Handbook of behavioral neurobiology biological rhythms (Vol. IV, pp. 95–124). New York: Plenum Press.

    Google Scholar 

  199. Albers, H. E., Liou, S. Y., Stopa, E. G., & Zoeller, R. T. (1991). Interaction of colocalized neuropeptides: Functional significance in the circadian timing system. Journal of Neuroscience, 11(3), 846–851.

    PubMed  Google Scholar 

  200. Schwartz, W. J., Davidsen, L. C., & Smith, C. B. (1980). In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. The Journal of Comparative Neurology, 189, 157–167.

    PubMed  Google Scholar 

  201. Kleitman, N., & Jackson, D. P. (1951). Body temperature and performance under different routines. Journal of Applied Physiology, 3, 309–328.

    Google Scholar 

  202. Folkard, S. (1975). Diurnal variation in logical reasoning. British Journal of Psychology, 66(1), 1–8.

    PubMed  Google Scholar 

  203. Folkard, S. (1979). Changes in immediate memory strategy under induced muscle tension and with time of day. The Quarterly Journal of Experimental Psychology, 31, 621–633.

    Google Scholar 

  204. Folkard, S. (1979). Time of day and level of processing. Memory and Cognition, 7, 247–252.

    Google Scholar 

  205. Folkard, S., & Haines, S. M. (1977). Adjustment to night in full and part-time night nurses [proceedings]. The Journal of Physiology, 267(1), 23P–24P.

    PubMed  Google Scholar 

  206. Folkard, S., Knauth, P., & Monk, T. H. (1976). The effect of memory load on the circadian variation in performance efficiency under a rapidly rotating shift system. Ergonomics, 19(4), 479–488.

    PubMed  Google Scholar 

  207. Folkard, S., Marks, M., Minors, D. S., & Waterhouse, J. M. (1985). Circadian rhythms in human performance and affective state. Acta Psychiatrica Belgica, 85(5), 568–581.

    PubMed  Google Scholar 

  208. Folkard, S., & Monk, T. H. (1980). Circadian rhythms in human memory. British Journal of Psychology, 71, 295–307.

    Google Scholar 

  209. Hockey, G. R., & Colquhoun, W. P. (1972). Diurnal variation in human performance: A review. In W. P. Colquhoun (Ed.), Aspects of human efficiency: Diurnal rhythm and loss of sleep. London: English Universities Press.

    Google Scholar 

  210. Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.

    PubMed  Google Scholar 

  211. Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.

    PubMed  Google Scholar 

  212. Rosenthal, N. E., & Blehar, M. (1989). Seasonal affective disorders and phototherapy. New York: Guilford Press.

    Google Scholar 

  213. Carskadon, M. A., Labyak, S. E., Acebo, C., & Seifer, R. (1999). Intrinsic circadian period of adolescent humans measured in conditions of forced desynchrony. Neuroscience Letters, 260(2), 129–132.

    PubMed  Google Scholar 

  214. Carskadon, M. A., Acebo, C., Richardson, G. S., Tate, B. A., & Seifer, R. (1997). An approach to studying ­circadian rhythms of adolescent humans. Journal of Biological Rhythms, 12(3), 278–289.

    PubMed  Google Scholar 

  215. Aschoff, J., & Wever, R. (1976). Human circadian rhythms: A multioscillatory system. Federation Proceedings, 35(12), 236–242.

    PubMed  Google Scholar 

  216. Folkard, S., Minors, D. S., & Waterhouse, J. M. (1984). Is there more than one circadian clock in humans? Evidence from fractional desynchronization studies. The Journal of Physiology, 357, 341–356.

    PubMed  Google Scholar 

  217. Treisman, M. (1984). Temporal rhythms and cerebral rhythms. Annals of the New York Academy of Sciences, 423, 542–565.

    PubMed  Google Scholar 

  218. Treisman, M. (1963). Temporal discrimination and the indifference interval. Implications for a model of the ­“internal clock”. Psychological Monographs, 77(13), 1–31.

    PubMed  Google Scholar 

  219. Treisman, M., Cook, N., Naish, P. L., & MacCrone, J. K. (1994). The internal clock: Electroencephalographic evidence for oscillatory processes underlying time perception. The Quarterly Journal of Experimental Psychology, 47(2), 241–289.

    PubMed  Google Scholar 

  220. Church, R. M. (1984). Properties of the internal clock. Annals of the New York Academy of Sciences, 423, 566–582.

    PubMed  Google Scholar 

  221. Ivry, R. B., Keele, S. B., & Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research, 73(1), 167–180.

    PubMed  Google Scholar 

  222. Heinemann, E. G. (1984). A model for temporal generalization and discrimination. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 361–371). New York: The New York Academy of Sciences.

    Google Scholar 

  223. Wing, M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.

    Google Scholar 

  224. Hopkins, G. W., & Kristofferson, A. B. (1980). Ultrastable stimulus-response latencies: Acquisition and stimulus control. Perceptual Psychophysiology, 27(3), 241–250.

    Google Scholar 

  225. Hopkins, G. W. (1984). Ultrastable stimulus-response latencies: Towards a model of response-stimulus synchronization. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 16–29). New York: The New York Academy of Sciences.

    Google Scholar 

  226. Kristofferson, A. B. (1977). A real-time criterion theory of duration discrimination. Perceptual Psychophysiology, 21(2), 105–117.

    Google Scholar 

  227. Stubbs, A. (1968). The discrimination of stimulus duration by pigeons. Journal of Experimental Analysis of Behavior, 11(3), 223–238.

    Google Scholar 

  228. Stubbs, D., Dreyfus, L. R., & Fetterman, J. G. (1984). The perception of temporal events. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 30–42). New York: The New York Academy of Sciences.

    Google Scholar 

  229. Stubbs, D. A. (1976). Scaling of stimulus duration by pigeons. Journal of Experimental Analysis of Behavior, 26(1), 15–25.

    Google Scholar 

  230. Stubbs, D. A. (1976). Response bias and the discrimination of stimulus duration. Journal of Experimental Analysis of Behavior, 25(2), 243–250.

    Google Scholar 

  231. Stubbs, D. A. (1980). Temporal discrimination and a free-operant psychophysical procedure. Journal of Experimental Analysis of Behavior, 33(2), 167–185.

    Google Scholar 

  232. Stubbs, D. A., Dreyfus, L. R., & Fetterman, J. G. (1984). The perception of temporal events. Annals of the New York Academy of Sciences, 423, 30–42.

    PubMed  Google Scholar 

  233. Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 52–77). New York: The New York Academy of Sciences.

    Google Scholar 

  234. Allan, L. G. (1977). The time-order error in judgments of duration. Canadian Journal of Psychology, 31, 24–31.

    Google Scholar 

  235. Allan, L. G. (1984). Timing and time perception. In J. Gibbon & L. Allan (Eds.), Annals of the New York Academy of Sciences (Vol. 423, pp. 116–130). New York: The New York Academy of Sciences.

    Google Scholar 

  236. Allan, L. G. (1984). Contingent aftereffects in duration judgments. Annals of the New York Academy of Sciences, 423, 116–130.

    PubMed  Google Scholar 

  237. Jamieson, D. G., & Petrusic, W. M. (1976). On a bias induced by the provision of feedback in psychophysical experiments. Acta Psychologica, 40, 127–152.

    Google Scholar 

  238. Jamieson, D. G. (1977). Two presentation order effects. Canadian Journal of Psychology, 31, 184–194.

    PubMed  Google Scholar 

  239. Jamieson, D. G., Slawinska, E., Cheesman, M. F., & Espinoza-Varas, B. (1984). Timing perturbations with complex auditory stimuli. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 96–102). New York: The New York Academy of Sciences.

    Google Scholar 

  240. Wasserman, E. A., DeLong, R. E., & Larew, M. B. (1984). Temporal order and duration: Their discrimination and retention by pigeons. Annals of the New York Academy of Sciences, 423, 103–115.

    PubMed  Google Scholar 

  241. DeLong, R. E., & Wasserman, E. A. (1981). Effects of differential reinforcement expectancies on successive matching-to-sample performance in pigeons. Journal of Experimental Psychology. Animal Behavior Processes, 7(4), 394–412.

    PubMed  Google Scholar 

  242. Ornstein, R. E. (1997). On the experience of time. Boulder, CO: Westview Press.

    Google Scholar 

  243. Michon, J. A., & Jackson, J. L. (1984). Attentional effort and cognitive strategies in the processing of temporal information. Annals of the New York Academy of Sciences, 423, 298–321.

    PubMed  Google Scholar 

  244. Block, R. A. (1982). Temporal judgments and contextual change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(6), 530–544.

    PubMed  Google Scholar 

  245. Keele, S. (1981). Behavioral analysis of movement. In V. Brooks (Ed.), Handbook of physiology: Motor control. Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  246. Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do perception and motor production share common timing mechanisms: A correctional analysis. Acta Psychologica, 60(2–3), 173–191.

    PubMed  Google Scholar 

  247. Rosenbaum, D. A. (1991). Human motor control. San Diego: Academic.

    Google Scholar 

  248. Viviani, P., & Terzuolo, C. (1982). Trajectory determines movement dynamics. Neuroscience, 7(2), 431–437.

    PubMed  Google Scholar 

  249. Stelmach, G. E., Mullins, P. A., & Teulings, H. L. (1984). Motor programming and temporal patterns in handwriting. Annals of the New York Academy of Sciences, 423, 144–157.

    PubMed  Google Scholar 

  250. Wing, A. M., Keele, S., & Margolin, D. I. (1984). Motor disorder and the timing of repetitive movements. Annals of the New York Academy of Sciences, 423, 183–192.

    PubMed  Google Scholar 

  251. Semjen, A., Leone, G., & Lipshits, M. (1998). Temporal control and motor control: Two functional modules which may be influenced differently under microgravity. Human Movement Science, 17(1), 77–93.

    PubMed  Google Scholar 

  252. Semjen, A., Schulze, H. H., & Vorberg, D. (2000). Timing precision in continuation and synchronization tapping. Psychological Research, 63(2), 137–147.

    PubMed  Google Scholar 

  253. Piek, J. P., Glencross, D. J., Barrett, N. C., & Love, G. L. (1993). The effect of temporal and force changes on the patterning of sequential movements. Psychological Research, 55(2), 116–123.

    PubMed  Google Scholar 

  254. Semjen, A., Garcia-Colera, A., & Requin, J. (1984). On controlling force and time in rhythmic movement sequences: The effect of stress location. Annals of the New York Academy of Sciences, 423, 168–182.

    PubMed  Google Scholar 

  255. Rumelhart, D., & Norman, D. A. (1982). Simulating a skilled typist: A study of skilled cognitive-motor performance. Cognition, 6(1), 1–36.

    Google Scholar 

  256. Schweickert, R. J. (1984). The representation of mental activities in critical path networks. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 82–95). New York: New York Academy of Sciences.

    Google Scholar 

  257. Kahana, M. J., Howard, M. W., Zaromb, F., & Wingfield, A. (2002). Age dissociates recency and lag recency effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 530–540.

    PubMed  Google Scholar 

  258. Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 923–941.

    PubMed  Google Scholar 

  259. Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory and Cognition, 24(1), 103–109.

    PubMed  Google Scholar 

  260. Izawa, C. (1971). Massed and spaced practice in paired-associate learning: List versus item distributions. Journal of Experimental Psychology, 89, 10–21.

    Google Scholar 

  261. Izawa, C. (2008). A unified theory of all-or-none and incremental learning processes via a new application of study-test-rest presentation programs and psychophysiological measures. The American Journal of Psychology, 121(4), 565–606.

    PubMed  Google Scholar 

  262. Tzeng, O. L. A., & Wetzel, C. D. (1979). Temporal coding in verbal information processing. Journal of Experimental Psychology: Human Learning and Memory, 5(1), 52–64.

    Google Scholar 

  263. Hock, H. S., Park, C. L., & Bjorklund, D. F. (1998). Temporal organization in children’s strategy formation. Journal of Experimental Child Psychology, 70(3), 187–206.

    PubMed  Google Scholar 

  264. Cleeremans, A., & McClelland, J. L. (1991). Learning the structure of event sequences. Journal of Experimental Psychology. General, 120(3), 235–253.

    PubMed  Google Scholar 

  265. Jou, J., & Harris, R. J. (1990). Event order versus syntactic structure in recall of adverbial complex sentences. Journal of Psycholinguistic Research , 19(1), 21–42.

    PubMed  Google Scholar 

  266. Stephane, M., Ince, N. F., Kuskowski, M., et al. (2010). Neural oscillations associated with the primacy and recency effects of verbal working memory. Neuroscience Letters, 473(3), 172–177.

    PubMed  Google Scholar 

  267. Parmentier, F. B., Andres, P., Elford, G., & Jones, D. M. (2006). Organization of visuo-spatial serial memory: Interaction of temporal order with spatial and temporal grouping. Psychological Research, 70(3), 200–217.

    PubMed  Google Scholar 

  268. Pace-Schott, E. F., & Spencer, R. M. (2011). Age-related changes in the cognitive function of sleep. Progress in Brain Research, 191, 75–89.

    PubMed  Google Scholar 

  269. Fouquet, C., Tobin, C., & Rondi-Reig, L. (2010). A new approach for modeling episodic memory from rodents to humans: The temporal order memory. Behavioural Brain Research, 215(2), 172–179.

    PubMed  Google Scholar 

  270. Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychology Review, 116(1), 129–156.

    Google Scholar 

  271. Wieser, S., & Wieser, H. G. (2003). Event-related brain potentials in memory: Correlates of episodic, semantic and implicit memory. Clinical Neurophysiology, 114(6), 1144–1152.

    PubMed  Google Scholar 

  272. Rescorla, R. A. (1976). Stimulus generalization: Some predictions from a model of Pavlovian conditioning. Journal of Experimental Psychology. Animal Behavior Processes, 2(1), 88–96.

    PubMed  Google Scholar 

  273. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. Black & W. F. Prokasy (Eds.), Classical conditioning II. New York: Appleton.

    Google Scholar 

  274. Gibbon, J., & Church, R. M. (1981). Time left: Linear versus logarithmic subjective time. Journal of Experimental Psychology. Animal Behavior Processes, 7(2), 87–107.

    PubMed  Google Scholar 

  275. Gallistel, C. R., & Gibbon, J. (2000). Time, rate, and conditioning. Psychology Review, 107(2), 289–344.

    Google Scholar 

  276. Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology. Animal Behavior Processes, 20(2), 135–155.

    PubMed  Google Scholar 

  277. Cooper, L. D., Aronson, L., Balsam, P. D., & Gibbon, J. (1990). Duration of signals for intertrial reinforcement and nonreinforcement in random control procedures. Journal of Experimental Psychology. Animal Behavior Processes, 16(1), 14–26.

    PubMed  Google Scholar 

  278. Church, R. M., & Gibbon, J. (1982). Temporal generalization. Journal of Experimental Psychology. Animal Behavior Processes, 8(2), 165–186.

    PubMed  Google Scholar 

  279. Jenkins, H. M. (1984). Time and conditioning in classical conditioning. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 242–253). New York: The New York Academy of Sciences.

    Google Scholar 

  280. Staddon, J. (1984). Time and memory. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, pp. 322–334). New York: The New York Academy of Sciences.

    Google Scholar 

  281. Meck, W. H., Komeily-Zadeh, F., & Church, R. M. (1981). Interference of signal timing by response timing. Paper presented at meeting of the Psychonomic Society, Philadelphia.

    Google Scholar 

  282. Meck, W. H. (1984). Attentional bias between modalities: Effect on the internal clock, memory, and decision stages used in animal time discrimination. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, pp. 528–541). New York: New York Academy of Sciences.

    Google Scholar 

  283. Meck, W. H., & Benson, A. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain and Cognition, 48(1), 195–211.

    PubMed  Google Scholar 

  284. Meck, W. H. (2006). Temporal memory in mature and aged rats is sensitive to choline acetyltransferase inhibition. Brain Research, 1108(1), 168–175.

    PubMed  Google Scholar 

  285. Meck, W. H. (2005). Neuropsychology of timing and time perception. Brain and Cognition, 58(1), 1–8.

    PubMed  Google Scholar 

  286. Meck, W. H., & Williams, C. L. (1997). Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport, 8(13), 2831–2835.

    PubMed  Google Scholar 

  287. Meck, W. H., & Church, R. M. (1987). Cholinergic modulation of the content of temporal memory. Behavioral Neuroscience, 101(4), 457–464.

    PubMed  Google Scholar 

  288. Meck, W. H., Church, R. M., & Olton, D. S. (1984). Hippocampus, time, and memory. Behavioral Neuroscience, 98(1), 3–22.

    PubMed  Google Scholar 

  289. Meck, W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. Journal of Experimental Psychology. Animal Behavior Processes, 9(2), 171–201.

    PubMed  Google Scholar 

  290. Meck, W. H., & Church, R. M. (1984). Simultaneous temporal processing. Journal of Experimental Psychology. Animal Behavior Processes, 10(1), 1–29.

    PubMed  Google Scholar 

  291. Killeen, P. R. (1984). Incentive theory III: Adaptive clocks. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 515–527). New York: The New York Academy of Sciences.

    Google Scholar 

  292. Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psychological Review, 92(2), 274–295.

    Google Scholar 

  293. Fetterman, J. G., & Killeen, P. R. (2010). Prospective and retrospective timing by pigeons. Learning & Behavior, 38(2), 119–125.

    Google Scholar 

  294. Fetterman, J. G., Killeen, P. R., & Hall, S. (1998). Watching the clock. Behavioural Processes, 44(2), 211–224.

    PubMed  Google Scholar 

  295. Fetterman, J. G., & Killeen, P. R. (1995). Categorical scaling of time: Implications for clock-counter models. Journal of Experimental Psychology. Animal Behavior Processes, 21(1), 43–63.

    PubMed  Google Scholar 

  296. Killeen, P. R., & Fetterman, J. G. (1993). The behavioral theory of timing: Transition analyses. Journal of Experimental Analysis of Behavior, 59(2), 411–422.

    Google Scholar 

  297. Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psychology Review, 95(2), 274–295.

    Google Scholar 

  298. Platt, J. R. (1984). Motivational and response factors in temporal differentiation. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 646–648). New York: The New York Academy of Sciences.

    Google Scholar 

  299. Massaro, D. W. (1972). Preperceptual images, processing time, and perceptual units in auditory perception. Psychological Review, 79, 124–145.

    PubMed  Google Scholar 

  300. Massaro, D. (1984). Time’s role for information, processing, and normalization. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 372–384). New York: The New York Academy of Sciences.

    Google Scholar 

  301. Massaro, D. W. (1975). Experimental psychology and information processing. Chicago: Rand McNally.

    Google Scholar 

  302. Massaro, D. (1989). Experimental psychology: An information processing approach. San Diego: Harcourt Brace Jovanovich.

    Google Scholar 

  303. Collard, R., & Leeuwenberg, E. (1981). Judged temporal order and spatial context. Canadian Journal of Psychology, 35, 323–329.

    PubMed  Google Scholar 

  304. Dreyfus, L. R., Fetterman, J. G., Smith, L. D., & Stubbs, D. A. (1988). Discrimination of temporal relations by pigeons. Journal of Experimental Psychology. Animal Behavior Processes, 14(4), 349–367.

    PubMed  Google Scholar 

  305. Deecke, L., Kornhuber, H. H., Lang, W., Lang, M., & Schreiber, H. (1985). Timing function of the frontal cortex in sequential motor and learning tasks. Human Neurobiology, 4(3), 143–154.

    PubMed  Google Scholar 

  306. Pouthas, V., & Jacquet, A. Y. (1987). A developmental study of timing behavior in 4 1/2- and 7-year-old children. Journal of Experimental Child Psychology, 43(2), 282–299.

    PubMed  Google Scholar 

  307. Macar, F., & Vitton, N. (1989). Effect of learning on production of duration in variable motor conditions. Acta Psychologica, 72(3), 247–261.

    PubMed  Google Scholar 

  308. Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. The Quarterly Journal of Experimental Psychology. B, 51(2), 97–120.

    Google Scholar 

  309. vom Hofe, A., & Fery, Y. A. (1991). Attentional demands of a temporal prediction task: The trajectory of a tennis ball. Perceptual and Motor Skills, 73(3 Pt 2), 1235–1243.

    PubMed  Google Scholar 

  310. Brown, S. W., & Stubbs, D. A. (1992). Attention and interference in prospective and retrospective timing. Perception, 21(4), 545–557.

    PubMed  Google Scholar 

  311. Broadway, J. M., & Engle, R. W. (2011). Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychologica, 137(1), 115–126.

    PubMed  Google Scholar 

  312. Lustig, C., & Meck, W. H. (2001). Paying attention to time as one gets older. Psychological Science, 12(6), 478–484.

    PubMed  Google Scholar 

  313. Woehrle, J. L., & Magliano, J. P. (2012). Time flies faster if a person has a high working-memory capacity. Acta Psychologica, 139(2), 314–319.

    PubMed  Google Scholar 

  314. Molet, M., Alessandri, J., & Zentall, T. R. (2011). Subjective time: Cognitive and physical secondary tasks affect timing differently. Quarterly Journal of Experimental Psychology, 64(7), 1344–1353.

    Google Scholar 

  315. Saarinen, J., & Julesz, B. (1991). The speed of attentional shifts in the visual field. Proceedings of the National Academy of Sciences of the United States of America, 88(5), 1812–1814.

    PubMed  Google Scholar 

  316. Sorkin, R. D. (1987). Temporal factors in the discrimination of tonal sequences. Journal of the Acoustical Society of America, 82(4), 1218–1226.

    PubMed  Google Scholar 

  317. Arnold, G., & Sieroff, E. (2012). Timing constraints of temporal view association in face recognition. Vision Research, 54, 61–67.

    PubMed  Google Scholar 

  318. Swallow, K. M., & Jiang, Y. V. (2011). The role of timing in the attentional boost effect. Attention, Perception, & Psychophysics, 73(2), 389–404.

    Google Scholar 

  319. Barnes, R., & Johnston, H. (2010). The role of timing deviations and target position uncertainty on temporal attending in a serial auditory pitch discrimination task. Quarterly Journal of Experimental Psychology, 63(2), 341–355.

    Google Scholar 

  320. Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72(4), 1120–1129.

    Google Scholar 

  321. Harrington, D. L., Castillo, G. N., Greenberg, P. A., et al. (2011). Neurobehavioral mechanisms of temporal processing deficits in Parkinson’s disease. PLoS One, 6(2), e17461.

    PubMed  Google Scholar 

  322. Harrington, D. L., Zimbelman, J. L., Hinton, S. C., & Rao, S. M. (2010). Neural modulation of temporal encoding, maintenance, and decision processes. Cerebral Cortex, 20(6), 1274–1285.

    PubMed  Google Scholar 

  323. Hinton, S. C., Harrington, D. L., Binder, J. R., Durgerian, S., & Rao, S. M. (2004). Neural systems supporting timing and chronometric counting: An FMRI study. Brain Research. Cognitive Brain Research, 21(2), 183–192.

    PubMed  Google Scholar 

  324. Harrington, D. L., & Haaland, K. Y. (1999). Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Reviews in the Neurosciences, 10(2), 91–116.

    PubMed  Google Scholar 

  325. Harrington, D. L., Haaland, K. Y., & Knight, R. T. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience, 18(3), 1085–1095.

    PubMed  Google Scholar 

  326. Harrington, D. L., & Haaland, K. Y. (1992). Motor sequencing with left hemisphere damage. Are some cognitive deficits specific to limb apraxia? Brain, 115(Pt 3), 857–874.

    PubMed  Google Scholar 

  327. Zahn, T. P., Kruesi, M. J., & Rapoport, J. L. (1991). Reaction time indices of attention deficits in boys with disruptive behavior disorders. Journal of Abnormal Child Psychology, 19(2), 233–252.

    PubMed  Google Scholar 

  328. Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K., & Metevia, L. (2001). Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Journal of Abnormal Child Psychology, 29(6), 541–556.

    PubMed  Google Scholar 

  329. Barkley, R. A. (1997). Attention-deficit/hyperactivity disorder, self-regulation, and time: Toward a more comprehensive theory. Journal of Developmental and Behavioral Pediatrics, 18(4), 271–279.

    PubMed  Google Scholar 

  330. Barkley, R. A., Koplowitz, S., Anderson, T., & McMurray, M. B. (1997). Sense of time in children with ADHD: Effects of duration, distraction, and stimulant medication. Journal of the International Neuropsychological Society, 3(4), 359–369.

    PubMed  Google Scholar 

  331. Lyon, M., Lyon, N., & Magnusson, M. S. (1994). The importance of temporal structure in analyzing schizophrenic behavior: Some theoretical and diagnostic implications. Schizophrenia Research, 13(1), 45–56.

    PubMed  Google Scholar 

  332. Allman, M. J., & Meck, W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135(Pt 3), 656–677.

    PubMed  Google Scholar 

  333. Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M., & Jahanshahi, M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson’s disease. Brain and Cognition, 68(1), 30–41.

    PubMed  Google Scholar 

  334. Michon, J., & Jackson, J. L. (1985). The psychology of time. In J. Michon & T. Jackson (Eds.), Time, mind, and behavior (pp. 2–17). Berlin: Springer.

    Google Scholar 

  335. Beck, L. H., Bransome, E. D., Jr., Mirsky, A. F., Rosvold, H. E., & Sarason, I. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20(5), 343–350.

    PubMed  Google Scholar 

  336. Findlay, J. M. (1983). Visual information processing for saccadic eye movements. In A. H. M. Jeannerod (Ed.), Spatially oriented behavior. New York: Springer.

    PubMed  Google Scholar 

  337. Lestienne, F., Whittington, D., & Bizzi, E. (1983). Coordination of eye-head movements in alert monkeys: Behavior of eye-related neurons in the brain stem. In A. H. M. Jeannerod (Ed.), Spatially oriented behavior. New York: Springer.

    PubMed  Google Scholar 

  338. Sperling, G. (1984). A unified theory of attention and signal detection. In R. Parasuraman and D.R. Davies (Eds.), Varieties of Attention. New York, N.Y.: Academic Press, pp. 103–181.

    PubMed  Google Scholar 

  339. Robinson, D. A. (1974). Occulomotor control signals. In G. Lennerstrand & P. Bach-y-Rita (Eds.), Basic mechanisms of ocular motility and their clinical implications (pp. 337–374). Oxford: Pergamon Press.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Spatial and Temporal Dynamics of Attention. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_25

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics