Skip to main content

The Diversity of Eye Optics

  • Chapter
Photobiology
  • 2488 Accesses

Abstract

This chapter starts with a description of the optics of camera-type eyes, in which an image is projected upon a retina with cornea and lens as refracting elements. Ray tracing is explained with the human eye as an example of a terrestrial vertebrate’s eye. Then the comparison is made to camera eyes of aquatic and amphibious animals, with an explanation of different kinds of aberrations, difficulties in accommodation to air and water as external media, and different solutions to these problems. A brief section deals with feedback regulation of eye development, and another one with eyes of particularly high light sensitivity. A section on compound eyes explains the difference between apposition and superposition eyes. It is pointed out that geometric optics (ray optics) is not adequate for analyzing the function of the small components of these eyes, and an introduction is given to waveguide and mode theory. This is followed by sections on antireflective nipple arrays, eyes with reflective optics, scanning eyes, and the chapter concludes with a treatise of the evolution of eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, S.T., Joyce, M.V., Boggess, B. and O’Tousa, J.E. (2006) The role of Drosophila ninaG oxidoreductase in visual pigment chromophore biogenesis. J. Biol. Chem. 281, 9205–9209.

    Google Scholar 

  • Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., and Hendler, G. (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822.

    Article  PubMed  CAS  Google Scholar 

  • Angel, J.R.P. (1979) Lobster eyes as x-ray telescopes. Astrophys. J. 233, 364–73.

    Article  CAS  Google Scholar 

  • Arendt, D., Tessmar-Raible, K. Snyman, H., Dorresteijn, A.W. and Wittbrodt, J. (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869–871.

    Article  PubMed  CAS  Google Scholar 

  • Balashov, S.P., Imasheva, E.S., Boichenko, V.A., Antòn, J. Wang, J.M, and Lanyi, J.K. (2005) Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science 309, 2061–2064.

    Article  PubMed  CAS  Google Scholar 

  • Baylor, E.R. (1967) Air and water vision of the Atlantic flying fish, Cypselurus heterusus. Nature 214, 307–308.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, C.G. and Miller, W.H. (1962) A corneal nipple pattern in insect compound eyes. Acta Physiol. Scand. 56, 385–386.

    CAS  Google Scholar 

  • Bernhard, C.G., Mø ller, A.R. and Miller, W.H. (1963) Function of corneal nipples in compound eyes of insects. Acta Physiol. Scand. 58, 381–382.

    PubMed  CAS  Google Scholar 

  • Bernhard, C.G., Miller, W.H. and Mø ller, A.R. (1965) Insect corneal nipple array—a biological broad-band impedance transformer that acts as an antireflection coating. Acta Physiol. Scand. S 63: 5- Suppl. 243.

    Google Scholar 

  • Bernhard, C.G., Gemne, G. and Sällström, J. (1970) Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z. Vergl. Physiologie 67, 1–25.

    Article  Google Scholar 

  • Chen, Y., Zhang, Y., Jiang, T.X., Barlow, A.J., St Amand, T.R., Hu, Y., Heaney, S., Francis-West, P., Chuong, C.M. and Maas. R. (2000) Conservation of early odontogenic signaling pathways in Aves. Proc. Natl. Acad. Sci. USA 97, 10044–10049.

    Google Scholar 

  • Douglas, R.H., Partridge, J.C., Dulai, K., Hunt, D., Mullineaux, C.W., Tauber, A.Y., and Hynninen, P.H. (1998) Dragon fish see using chlorophyll. Nature 393 (6684): 423–424.

    Article  CAS  Google Scholar 

  • Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M., Mullineaux, C.W., and Hynninen, P.H. (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res. 39, 2817–2832.

    Article  PubMed  CAS  Google Scholar 

  • Duparré, J.W. and Wippermann, F.C. (2006) Micro-optical artificial compound eyes. Bioinsp. Biomim. 1 (2006) R1–R16

    Google Scholar 

  • Fernald, R.D. (2000) Evolution of eyes. Curr. Opin. Neurobiol. 10, 444–450.

    CAS  Google Scholar 

  • Fleishman, L.J., Howland, H.C., Howland, M.J., Rand, R.S., and M.L. Davenport. M.L. (1988) Crocodiles don’t focus underwater. J. Comp. Physiol. A 163:441–443.

    Article  PubMed  CAS  Google Scholar 

  • Fortey, R. and Chatterton, B. (2003) A Devonian trilobite with an eyeshade. Science 301, 1689.

    Article  PubMed  Google Scholar 

  • Francis, D. (1967) On the eyespot of the dinoflagellate Nematodinium. J. Exp. Biol. 47, 495–501.

    PubMed  CAS  Google Scholar 

  • Frost, B.J. (1975) Eye movements in Daphnia pulex (De Geer). J. Exp. Biol. 62, 175–187.

    PubMed  CAS  Google Scholar 

  • Gaffney, M.F. and Hodos, W. (2003) The visual acuity and refractive state of the American kestrel (Falco sparvensis). Vision Res. 43, 2053–2093.

    Article  PubMed  Google Scholar 

  • Gál, J., Horváth, G., Clarkson, E.N.K. and Haiman, O. (2000) Image formation by bifocal lenses in a trilobite eye? Vision Res. 40, 843–853.

    Article  PubMed  Google Scholar 

  • Gehring, W.J. (2005) New perspectives on eye development and the dvolution of dyes and photoreceptors J. Heredity 96, 171–184.

    Article  CAS  Google Scholar 

  • Gould, S.J. (1983) Hen’s Teeth and Horse’s Toes. W.W. Norton, New York.

    Google Scholar 

  • Graham, J.B. and Rosenblatt, R.H. (1970) Aerial vision: Unique adaptation in an intertidal fish. Science 168, 586–588.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, R.L., Ross, H.E. and Moray, N. (1964) The curious eye of Copilia. Nature 201, 1166–1168.

    Article  Google Scholar 

  • Grémillet, D., Kuntz, G., Gilbert, C., Woakes, A.J., Butler, P.J. and le Maho, Y. (2005) Cormorants dive through the Polar night. Biol. Lett. 1, 469–471.

    Article  PubMed  Google Scholar 

  • Harris, M.P., Hasso, S.M, Ferguson, M.W.J. and Fallon, J.F. (2006) The development of archosaurian first-generation teeth in a chicken mutant. Curr. Biol. 16, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Hanke, F.D., Dehnhardt, G., Schaeffel, F. and Hanke, W. (2006) Corneal topography, refractive state, and accomodation in harbor seals (Phoca vitulina). Vision Res. 46, 837–847.

    Article  PubMed  Google Scholar 

  • Herman, L.M., Peacock, M.F., Ynkeer, M.P. and Madsen, C.J. (1975) Bottlenosed dolphin: Double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science 189, 650–652.

    Article  PubMed  CAS  Google Scholar 

  • Hooke, R. (1665) Micrographia: or, some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. J. Martyn and J. Allestry, London.

    Google Scholar 

  • Horridge, G.A. (2002) The design of the compound eye depends on the physics of light. In: L.O. Björn (Ed.), Photobiology: The science of light and life. Kluwer Academic Publishers, Dordrecht, pp. 181–218.

    Google Scholar 

  • Horridge, G.A. (2005) The spatial resolutions of the apposition compound eye and its neuro-sensory feature detectors: observation versus theory. J. Insect Physiol. 51, 243–266.

    Article  PubMed  CAS  Google Scholar 

  • Isayama, T., Alexeev, D., Makino, C.L., Washington, I., Nakanishi, K. and Turro, N.J. (2006) An accessory chromophore in red vision. Nature 443, 649.

    Article  PubMed  CAS  Google Scholar 

  • Iwaya, M., Kasugai, H., Kawashima, T., Iida, K., Honshio, A., Miyake, Y., Kamiyama, S., Amano, H. and Akasaki, I. (2006) Improvement in light extraction efficiency in group III nitride-based light-emitting diodes using moth-eye structure. Thin Solid Films 515, 768–770.

    Article  CAS  Google Scholar 

  • Jagger, W.S. (1992) The optics of the spheherical fish lens. Vision Res. 32, 1271–1284.

    Article  PubMed  CAS  Google Scholar 

  • Jagger, W.S. (1997) Chromatic and monochromatic optical resolution in the rainbow trout. Vision Res. 37, 1249–1254.

    Article  PubMed  CAS  Google Scholar 

  • Jagger, W.S. and Sands, P.J. (1996) A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout. Vision Res. 36, 2623–2639.

    Article  PubMed  CAS  Google Scholar 

  • Jagger, W.S. and Sands, P.J. (1999) A wide-angle gradient index optical model of the crystalline lens and eye of the octopus. Vision Res. 39, 2841–2853.

    Article  PubMed  CAS  Google Scholar 

  • Jermann, T. and Senn, D.G. (1992) Amphibious vision in Coryphoblennius galerita L. (Perciformes). Experientia 48, 217–218.

    Article  PubMed  CAS  Google Scholar 

  • Katzir, G. and Howland, H.C. (2003) Corneal power and underwater accomodation in great cormorants (Phalacrocorax carbo sinensis). J. Exp. Biol. 206, 833–841.

    Article  PubMed  Google Scholar 

  • Kollar, E.J. and Fisher, C. 1980. Tooth induction in chick epithelium: Expression of quiescent genes for enamel synthesis. Science 207, 993–995.

    Article  PubMed  Google Scholar 

  • Kozmik, Z., Daube, M., Frei, E., Kos, L., Dishaw, L.J., Noll, M., and Piatigorsky, J. (2003) Role of Pax genes in eye evolution: A cnidarian PaxB gene uniting Pax2 and Pax6 functions. Developmental Cell 5, 773–785.

    Article  PubMed  CAS  Google Scholar 

  • Kröger, R.H.H. and Campbell, M.C.W. (1996) Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni. J. Opt. Soc. Am. A 13, 2341–2347.

    Google Scholar 

  • Kröger, R.H.H., Campbell, M.C.W., Fernald, R.D. and Wagner, H.J. (1999) Multifocal lenses compensate for chromatic defocus in vertebrate eyes. J. Comp. Physiol. A 184, 361–369.

    Article  PubMed  Google Scholar 

  • Kröger, R.H.H., Campbell, M.C.W. and Fernald, R.D. (2001) The development of the crystalline lens is sensitive to visual input in the African cichlid fish, Haplochromis burtoni. Vision Res. 41, 549–559.

    Article  PubMed  Google Scholar 

  • Kröger, R.H.H. and Fernald, R.D. (1994) Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Vision Res. 34, 1807–1814.

    Article  PubMed  Google Scholar 

  • Kröger, R.H.H. and Wagner, H.J. (1996) The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration. J. Comp. Physiol. A. 179, 837–842.

    Article  PubMed  Google Scholar 

  • Land , M.F. (1978) Animal eyes with mirror optics. Sci. Am. 239, 126–34.

    Article  Google Scholar 

  • Land, M.F. (1982) Scanning eye movements in a heteropod mollusc. J. Exp. Biol. 96, 427–430.

    Google Scholar 

  • Land, M.F. (2000) Eyes with mirror optics. J. Opt. A: Pure Appl. Opt. 2, R44–R50.

    Article  Google Scholar 

  • Land, M.F. and Nilsson, D.-E. (2002) Animal eyes. Oxford University Press, New York.

    Google Scholar 

  • Lee, L.P. and Szema, R. (2005) Inspirations from biological optics for advanced photonic systems science 18, 1148–1150.

    Article  CAS  Google Scholar 

  • Liou, H.-L. and Brennan, N.A. (1997) Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A, 14, 1684–1695.

    Article  CAS  Google Scholar 

  • Litwiler, T.L. and Cronin, T.W. (2001) No evidence of accomodation in the eyes of the bottlenose dolphin, Tursiops truncatus. Marine Mammal Sci. 17, 508–525.

    Article  Google Scholar 

  • Liu, Y.-J., Wang, Z.-Q., Song, L.-P., and Mu, G.-G. (2005) An anatomically accurate eye model with a shell-structure lens. Optik 116, 241–246.

    Google Scholar 

  • Mallock A. 1894. Insect sight and the defining power of compound eyes. Proc. R. Soc. London B 55, 85–90.

    Google Scholar 

  • Martin, G.R. (1998) Eye structure and amphibious foraging in albatrosses. Proc. Roy. Soc. Lond. B. 265, 665–671.

    Article  Google Scholar 

  • Martin, G., Rojas, L.M., Ramírez, Y. and McNeil, R. (2004) The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwiss. 91, 26–29.

    Article  PubMed  CAS  Google Scholar 

  • Martin, V.J. (2004) Photoreceptors of cubozoan jellyfish. Hydrobiologia 530-531, 135–144.

    Article  Google Scholar 

  • Meyer-Rochow, V.B. and Stringer, I.A. (1993) A system of regular ridges instead of nipples on a compound eye that has to operate near the diffraction limit. Vision Res. 33, 2645-2647.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.H., Mø ller, A. R. and Bernhard, C.G. (1966) The corneal nipple array. In: C. G. Bernhard, (Ed.), The functional organization of the compound eye. Pergamon Press, London, pp. 21–33.

    Google Scholar 

  • Mongodin, E.F., Nelson, K.E., Daugherty, S., DeBoy, R.T., Wister, J., Khouri, J.H., Weidman, J., Walsh, D.A., Papke, R.T., Sanchez Perez, G., Sharma, A.K., Nesbo, C.L., MacLeod, D., Bapteste, E., Doolittle, W.F., Charlebois, R.L., Legault, B. and Rodriguez-Valera, F. (2005) The genome of Salinibacter ruber: Convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152.

    Article  CAS  Google Scholar 

  • Navarro, R., Santamaría, J. and Bescós. J. (1985) Accommodation-dependent model of the human eye with aspherics. J. Opt. Soc. Am. A 8, 1273–1281.

    Google Scholar 

  • Nielsen, C. and Martinez, P. (2003) Patterns of gene expression: homology or homocrazy? Development Genes Evol. 213, 149–154.

    Google Scholar 

  • Nilsson, D.-E., Land, M.F. and Howard, J. (1984) Afocal apposition optics in butterfly eyes. Nature 312, 561–563.

    Article  Google Scholar 

  • Nilsson, D.E., Gislen, L., Coates, M.M., Skogh, C. and Garm, A. (2005) Advanced optics in a jellyfish eye, Nature 435, 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, T.H. (2003a) The eye as a replicating and diverging, modular developmental unit. Trends Ecology Evol. 18, 623–627.

    Article  Google Scholar 

  • Oakley, T.H. (2003b) On homology of arthropod compound eyes. Integr. Comp. Biol. 43, 522–530.

    Article  Google Scholar 

  • Onuma, Y., Takahashi, S., Asashima, M., Kurata, S. and Gehring, W.J. (2002). Conservation of Pax-6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc. Natl. Acad. Sci. USA 99, 2020–2025.

    Article  PubMed  CAS  Google Scholar 

  • Ott, M. (2006) Visual accommodation in vertebrates: mechanisms, physiological response, and stimuli. J. Comp. Physiol. A. 192, 97–111.

    Article  Google Scholar 

  • Peck, R.F., Echavarri-Erasun, C., Eric A. Johnson, E.A., Wailap Victor Ngi, W.V., Kennedy, S.P., Hoodi, L., DasSarma, S. and Krebs, M.P. (2001) brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J. Biol. Chem. 23, 5739–5744.

    Article  Google Scholar 

  • Piatigorsky, J. (2006) Seeing the light: the role of inherited developmental cascades in the origins of vertebrate lenses and their crystallins. Heredity 96, 275–277.

    Article  PubMed  CAS  Google Scholar 

  • Ruch, S., Beyer, P., Ernst, H. and Al-Babili, S. (2005) Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC6803. Mol. Microbiol. 55, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  • Saidel, W.M. and Fabiane, R.S. (1998) Optomotor response of Anableps anableps depends on the field of view. Vision Res. 38, 2001–2006.

    Article  PubMed  CAS  Google Scholar 

  • Sandeman, D.C. (1978) Eye-scanning during walking in the crab Leptograpsus variegans. J. Comp. Physiol. 124, 249–257.

    Article  Google Scholar 

  • Schaeffel, F. and Mathis, U. (1991) Underwater vision in semi-aquatic European snakes. Naturwissenschaft 78, 373–375.

    Article  Google Scholar 

  • Seki, T., Isono, K, Ozaki, K., Tsukahara, Y., Shibata-Katsuta, Y., Ito, M., Irie, T. and Katagir, M. (1998) The metabolic pathway of visual pigment chromophore formation in Drosophila melanogaster. All-trans (3S)-3-hydroxyretinal is formed from all-trans retinal via (3R)-3-hydroxyretinal in the dark. Eur. J. Biochem. 257, 522–527.

    CAS  Google Scholar 

  • Snyder, A.W. (1969) Asymptotic expressions for eigenfunctions and eigenvalues of a dielelectric or optical waveguide. IEEE Trans. Microw. Theory Techn. MIT-17, 1130–1138.

    Article  Google Scholar 

  • Stavenga, D.G., Foletti, S., Palasantzas, G. and Arikawa, K. (2006) Light on the mothe-eye corneal nipple array of butterflies. Proc. Roy. Soc. B 273, 661–667.

    Article  CAS  Google Scholar 

  • Strod, T., Arnd, Z., Izhaki, I. and Katzir, G. (2004) Cormorants keep their power: visual resolution in a pursuit-diving bird under amphibious and turbid conditions. Curr. Biol. 14, R376-R-377.

    Article  PubMed  CAS  Google Scholar 

  • Swamynathan, S.K., Crawford, M.A., Robison, W.G., Kanungo, J. and Platigorsky, J. (2003). Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). FASEB J. 17, 1996–2005.

    Article  PubMed  CAS  Google Scholar 

  • Terakita, A. (2005) The opsins. Genome Biol. 6, 213.

    Article  PubMed  Google Scholar 

  • Thomas, A.T. (2005) Developmental palaeobiology of trilobite eyes and its evolutionary significance. Earth-Science Rev. 71, 77–93.

    Article  Google Scholar 

  • Varela, F.G. and Wiitanen, W. (1970) The optics of the compound eye of the honeybee. J. Gen. Physiol. 55, 336–358.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, K. (1975) Zur Optik des Flusskrebsauges. Z. Naturforsch. 30, 691–691.

    CAS  Google Scholar 

  • Vogt, K. (1977) Ray path and reflection mechanisms in crayfish eyes. Z. Naturforsch. 32, 466–468.

    Google Scholar 

  • Vogt, K. (1980) Die Spiegeloptik des Flusskrebsauges. (The optical system of the crayfish eye.) J. Comp. Physiol. A 135, 1–19.

    Article  Google Scholar 

  • van Hateren, J.H. and Nilsson, D.-E. (1987) Butterfly optics exceed the theoretical limits of conventional apposition eyes. Biol. Cybernetics 57, 159–168.

    Article  Google Scholar 

  • von Salvini-Plawen, L.V and Mayr, E. (1977) On the evolution of photoreceptors and eyes. In: M. K. Hecht, W.C. Steere, and B. Wallace (Eds.) Evolutionary Biology 10. Plenum, New York, pp. 207–263.

    Google Scholar 

  • Wagner, H.-J., Fröhlich, E., Negishi, K. and Collin, S.P. (1998) The eyes of deep-sea fish II. Functional morphology of the retina. Progr. Retinal Eye Res. 17, 637–685.

    Article  CAS  Google Scholar 

  • Warrant, E. and Nilsson, D.-E., Eds. (2006) Invertebrate vision. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Whiting, M. F., Bradler, S. and Maxwell, T. (2003) Loss and recovery of wings in stick insects. Nature 421, 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Wolken, J.J. and Florida, R.G. (1969) The eye structure and the optical system in the crustacean copepod Copilia. J. Cell Biology 40, 279–286.

    Article  CAS  Google Scholar 

  • Zhu, X.Y., Park, T.W., Winawer, J. and Wallman, J. (2005) In a matter of minutes, the eye can know which way to grow. Invest. Ophthalmol. Visual Sci. 46, 2238–2241.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Björn, L.O. (2008). The Diversity of Eye Optics. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_11

Download citation

Publish with us

Policies and ethics