Skip to main content

The Measurement of Light

  • Chapter
Photobiology
  • 2471 Accesses

Abstract

In this chapter various thermal, electronic, and chemical devices are described, as well as the construction and calibration of a spectroradiometer. A separate section is devoted to the measurement of very weak light, such as the ultraweak luminescence from living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Literature for Further Reading

  • Adick, H.-J., Schmidt, R. and Brauer, H.-D. (1989)A chemical actinometer for the wavelength range 610-670 nm. J. Photochem. Photobiol. 49A, 311–316.

    Article  Google Scholar 

  • Alfano, R.R. and Ockman, N. (1968)Methods for detecting weak light signals. J. Optical Soc. Am. 58, 90–95.

    CAS  Google Scholar 

  • Allen, J.M., Allen, S.K. and Baertschi, W.W. (2000)2-Nitrobensaldehyde: a convenient UV-A and UV-B chemical actinometer for drug photostability testing. J. Pharmaceut. Biomed. Anal. 24, 167–178.

    Article  CAS  Google Scholar 

  • Bérces, A., Fekete, A., Gáspár, P., Grof, P., Rettberg, P., Hornedk, G. and Rontó, G. (1999)Biological UV dosimeters in the assessment of biological hazards from environmental radiation. J. Photochem. Photobiol. B Biol. 53, 36–43.

    Article  Google Scholar 

  • Björn, L.O. (1971)Simple methods for the calibration of light measuring equipment. Physiol. Plant. 25, 300–307.

    Article  Google Scholar 

  • Björn, L.O. (1995)Estimation of fluence rate from irradiance measurements with a cosine corrected sensor. J. Photochem. Photobiol. B Biol. 29, 179–183.

    Article  Google Scholar 

  • Björn, L.O. and Vogelmann, T.C. (1996)Quantifying light and ultraviolet radiation in plant biology. Photochem. Photobiol. 64, 403–406.

    Google Scholar 

  • Evans, W.G. (2005)Infrared radiation sensors of Melanophila acuminata (Coleoptera: Buprestidae): a thermopneumatic model. Ann. Entomol. Soc. Am. 98, 738–746.

    Article  Google Scholar 

  • Goldstein, S. and Rabani, J. (2007)The ferrioalate and iodide-idodate actinometers in the UV region. J. Photochem. Photobiol. A: Chemistry, doi: 10.10/6/jjphotochem. 2007.06.006.

    Google Scholar 

  • Hale, G.M. and Querry, M.R. (1973)Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt. 12, 555–563.

    Article  CAS  Google Scholar 

  • Hatchard, C.G. and Parker, C.A. (1956)A new sensitive actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc. Roy. Soc. A235, 518–536.

    CAS  Google Scholar 

  • Jagger, J. (1967)Introduction to research in ultraviolet photobiology. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Kuhn, H.J., Braslavsky, S.E. and Schmidt, R. (1989)Chemical actinometry. Pure Appl. Chem. 61, 187–210

    Article  CAS  Google Scholar 

  • Lee, J. and Seliger, H.H. (1964)Quantum yield of the ferrioxalate actinometer. J. Chem. Phys. 40, 519–523.

    Article  CAS  Google Scholar 

  • Marijnissen, J.P.A. and Star, W.M. (1987)Quantitative light dosimetry in vitro and in vivo. Lasers Med. Sci. 2, 235–242.

    Article  Google Scholar 

  • Mirón, A.S., Grima, E.M., Sevilla, J.M.F., Chisti, Y. and Camacho, F.G. (2000)Assessment of the photosynthetically active incident radiation on outdoor photobioreactors using oxalic acid/uranyl sulfate chemical actinometer. J. Appl. Phycol. 12, 385–394.

    Article  Google Scholar 

  • Namekata, N., Sasamori, S. and Inoue, S. (2006)800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Optics Express 14, 10043–10049.

    Article  PubMed  CAS  Google Scholar 

  • Optronics Laboratories (1995)Improving integrating sphere design for near-perfect cosine response. Application Note (A9). Downloadable from http://www.olinet.com

    Google Scholar 

  • Optronic Laboratories (2001)Standard spheres and sphere standards. Application Note (A15). Downloadable from http://www.olinet.com

    Google Scholar 

  • Rahn, R.O. (1997)Potassium iodide as a chemical actinometer for 254 nm radiation: Use of iodate as an electron scavenger. Photochem. Photobiol. 66, 450.

    CAS  Google Scholar 

  • Rolfe, J. and Moore, S.E. (1970)The efficient use of photomultiplier tubes for recording spectra. Appl. Optics 9, 63–71.

    Google Scholar 

  • Ryer, A.D. (1997)Light measurement handbook. Newburyport: International Light, Inc., Technical Publications Dept. ISBN 0-9658356. Downloadable from http://www. intl-light.com/handbook/

    Google Scholar 

  • Schmid, B. and Wehrli, C. (1995)Comparison of sun photometer calibration by use of the Langley technique and the standard lamp. Appl. Optics 34, 4500–4512.

    Google Scholar 

  • Schmid, B., Spyak, P.R., Biggar, S.F., Wehrli, C., Sekler, J., Ingold, T., Mätzler, C. and Kämpfer, N. (1998)Evaluation of the applicability of solar and lamp radiometric calibrations of a precision sun photometer operating between 300 and 1025 nm. Appl. Optics 37, 3923–3941.

    CAS  Google Scholar 

  • Schneider, W.E. and Young, R. Spectroradiometry methods. Application Note (A14), pp. 49. Orlando, FL: Optronics Laboratories. Downloadable from http://www. olinet.com

    Google Scholar 

  • Seliger, H.H. and McElroy, W. (1965)Light: Physical and biological action. Academic Press, New York.

    Google Scholar 

  • Skovsen, E., Snyder, J.W. and Ogilby, P.R. (2006)Two-photon singlet oxygen microscopy: The challenges working with single cells. Photochem. Photobiol. 82, 1187–1197.

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann, T.C. and Björn, L.O. (1984)Measurement of light gradients and spectral regime in plant tissue with a fiber optic probe. Physiol. Plant. 60, 361–368.

    Article  Google Scholar 

  • Wilson, S.R. and Forgan, B.W. (1995)In situ calibration technique for UV spectral measurements. Appl. Optics 34, 5475–5484.

    Article  Google Scholar 

  • Wegner, E.E. and Adamson, W.W. (1966)Photochemistry of complexions. III. Absolute quantum yields for the photolysis of some aqueous chromium (III) complexes. Chemical actinometry in the long wavelength visible region. J. Am. Chem. Soc. 88, 394–404.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Björn, L.O. (2008). The Measurement of Light. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_4

Download citation

Publish with us

Policies and ethics