Skip to main content

Combinatorial Methods for Chemical and Biological Sensors: Outlook

  • Chapter
Combinatorial Methods for Chemical and Biological Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 965 Accesses

Abstract

This chapter provides a summary of status of combinatorial development of materials for chemical and biological sensors and an outlook for the future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Göpel, W., Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses, Sens. Actuators B 1998, 52, 125–142.

    Article  Google Scholar 

  2. Weimar, U.; Göpel, W., Chemical imaging: II. Trends in practical multiparameter sensor systems, Sens. Actuators B 1998, 52, 143–161.

    Article  Google Scholar 

  3. Mitrovics, J.; Ulmer, H.; Weimar, U.; Göpel, W., Modular sensor systems for gas sensing and odor monitoring: The moses concept, Acc. Chem. Res. 1998, 31, 307–315.

    Article  CAS  Google Scholar 

  4. Ertl, G., Elementary steps in heterogeneous catalysis, Angew. Chem. Int. Ed. 1990, 29, 1219–1227.

    Article  Google Scholar 

  5. Buhlmann, K.; Schlatt, B.; Cammann, K.; Shulga, A., Plasticised polymeric electrolytes: New extremely versatile receptor materials for gas sensors (VOC monitoring) and electronic noses (odour identification:discrimination), Sens. Actuators B 1998, 49, 156–165.

    Article  Google Scholar 

  6. Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699.

    Article  CAS  Google Scholar 

  7. Conway, V. L.; Hassen, K. P.; Zhang, L.; Seitz, W. R.; Gross, T. S., The influence of composition on the properties of pH-swellable polymers for chemical sensors, Sens. Actuators B 1997, 45, 1–9.

    Article  Google Scholar 

  8. Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A., Twenty-five years of field effect gas sensor research in Linköping, Sens. Actuators B 2007, 121, 247–262.

    Article  Google Scholar 

  9. Dickinson, T. A.; Walt, D. R.; White, J.; Kauer, J. S., Generating sensor diversity through combinatorial polymer synthesis, Anal. Chem. 1997, 69, 3413–3418.

    Article  CAS  Google Scholar 

  10. Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol—gel-derived xerogel formulations, Appl. Spectrosc. 2002, 56, 1385–1389.

    Article  CAS  Google Scholar 

  11. Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S., A combinatorial approach for development of materials for optical sensing of gases, J. Comb. Chem. 2004, 6, 325–331.

    Article  CAS  Google Scholar 

  12. Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515.

    Article  CAS  Google Scholar 

  13. Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Jockel, J.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754.

    Article  CAS  Google Scholar 

  14. Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S., Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers, Macromol. Rapid Commun. 2004, 25, 253–258.

    Article  CAS  Google Scholar 

  15. Cohan, P. E., Combinatorial materials science applied — mini case studies, lessons and strategies, In 2002 Combi — The 4th Annual International Symposium on Combinatorial Approaches for New Materials Discovery, Knowledge Foundation, Arlington, VA, 2002.

    Google Scholar 

  16. de Gans, B.-J.; Wijnans, S.; Woutes, D.; Schubert, U. S., Sector spin coating for fast preparation of polymer libraries, J. Comb. Chem. 2005, 7, 952–957.

    Article  Google Scholar 

  17. Egger, S.; Higuchi, S.; Nakayama, T., A method for combinatorial fabrication and characterization of organic/inorganic thin film devices in uhv, J. Comb. Chem. 2006, 8, 275–279.

    Article  CAS  Google Scholar 

  18. Potyrailo, R. A.; Morris, W. G.; Leach, A. M.; Hassib, L.; Krishnan, K.; Surman, C.; Wroczynski, R.; Boyette, S.; Xiao, C.; Shrikhande, P.; Agree, A.; Cecconie, T., Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives, Appl. Opt. 2007, 46, 7007–7017.

    Article  Google Scholar 

  19. Potyrailo, R. A.; Maier, W. F., Combinatorial materials and catalysts development: Where are we and how far can we go?, In Combinatorial and High-Throughput Discovery and Optimization Of Catalysts and Materials; R. A. Potyrailo and W. F. Maier, Eds.; CRC Press: Boca Raton, FL, 2006; 3–16.

    Chapter  Google Scholar 

  20. Frenzer, G.; Frantzen, A.; Sanders, D.; Simon, U.; Maier, W. F., Wet chemical synthesis and screening of thick porous oxide films for resistive gas sensing applications, Sensors 2006, 6, 1568–1586.

    Article  CAS  Google Scholar 

  21. Villoslada, F. N.; Takeuchi, T., Multivariate analysis and experimental design in the screening of combinatorial libraries of molecular imprinted polymers, Bull. Chem. Soc. Jpn. 2005, 78, 1354–1361.

    Article  CAS  Google Scholar 

  22. Mijangos, I.; Navarro-Villoslada, F.; Guerreiro, A.; Piletska, E.; Chianella, I.; Karim, K.; Turner, A.; Piletsky, S., Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers, Biosens. Bioelectron. 2006, 22, 381–387.

    Article  CAS  Google Scholar 

  23. Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol A polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096.

    Article  CAS  Google Scholar 

  24. Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532.

    Article  CAS  Google Scholar 

  25. Potyrailo, R. A.; Olson, D. R.; Chisholm, B. J.; Brennan, M. J.; Lemmon, J. P.; Cawse, J. N.; Flanagan, W. P.; Shaffer, R. E.; Leib, T. K. High throughput analysis of polymer materials and coatings, In: Invited Symposium “Analytical Tools For High Throughput Chemical Analysis And Combinatorial Materials Science”, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 4–9, New Orleans, Louisiana, 2001.

    Google Scholar 

  26. Jansen, M., A concept for synthesis planning in solid-state chemistry, Angew. Chem. Int. Ed. 2002, 41, 3746–3766.

    Article  CAS  Google Scholar 

  27. Potyrailo, R. A., High-throughput experimentation in early 21st century: Searching for materials descriptors, not for a needle in the haystack, 6th DPI Workshop on Combinatorial and High-Throughput Approaches in Polymer Science, September 1011, Darmstadt, Germany, 2007.

    Google Scholar 

  28. Göpel, W.; Reinhardt, G., Metal oxide sensors: New devices through tailoring interfaces on the atomic scale, In Sensors Update, vol. 1; H. Baltes; W. Göpel and J. Hesse, Eds.; VCH: Weinheim, 1996; 47–120.

    Google Scholar 

  29. Frantzen, A.; Sanders, D.; Scheidtmann, J.; Simon, U.; Maier, W. F., A flexible database for combinatorial and high-throughput materials science, QSAR Comb. Sci. 2005, 24, 22–28.

    Article  CAS  Google Scholar 

  30. Sieg, S. C.; Suh, C.; Schmidt, T.; Stukowski, M.; Rajan, K.; Maier, W. F., Principal component analysis of catalytic functions in the composition space of heterogeneous catalysts, QSAR Comb. Sci. 2007, 26, 528–535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Potyrailo, R.A., Mirsky, V.M. (2009). Combinatorial Methods for Chemical and Biological Sensors: Outlook. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_21

Download citation

Publish with us

Policies and ethics