Skip to main content

History and Development of Speech Recognition

  • Chapter
  • First Online:
Speech Technology

Abstract

Speech is the primary means of communication between humans. For reasons ranging from technological curiosity about the mechanisms for mechanical realization of human speech capabilities to the desire to automate simple tasks which necessitate human–machine interactions, research in automatic speech recognition by machines has attracted a great deal of attention for five decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, J. (2002). From Lord Rayleigh to Shannon: How do we decode speech? In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Orlando, FL, http://www.auditorymodels.org/jba/PAPERS/ICASSP/Plenary_Allen.asp.html.

  2. ATIS Technical Reports (1995). Proc. ARPA Spoken Language Systems Technology Workshop, Austin, TX, 241–280.

    Google Scholar 

  3. Beek, B., Neuberg, E., Hodge, D. (1977). An assessment of the technology of automatic speech recognition for military applications. IEEE Trans. Acoust., Speech, Signal Process., 25, 310–322.

    Google Scholar 

  4. Bridle, J. S., Brown, M. D. (1979). Connected word recognition using whole word templates. In: Proc. Inst. Acoustics Autumn Conf., 25–28.

    Google Scholar 

  5. Chou, W. (2003). Minimum classification error (MCE) approach in pattern recognition. Chou, W., Juang, B.-H. (eds) Pattern Recognition in Speech and Language Processing. CRC Press, New York, 1–49.

    Google Scholar 

  6. Chow, Y. L., Dunham, M. O., Kimball, O. A. (1987). BYBLOS, the BBN continuous speech recognition system. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Dallas, TX, 89–92.

    Google Scholar 

  7. Davis, K. H., Biddulph, R., Balashek, S. (1952). Automatic recognition of spoken digits. J. Acoust. Soc. Am., 24 (6), 637–642.

    Google Scholar 

  8. Ferguson, J. (ed) (1980). Hidden Markov Models for Speech. IDA, Princeton, NJ.

    Google Scholar 

  9. Forgie, J. W., Forgie, C. D. (1959). Results obtained from a vowel recognition computer program. J. Acoust. Soc. Am., 31 (11), 1480–1489.

    Google Scholar 

  10. Fry, D. B., Denes, P. (1959). Theoretical aspects of mechanical speech recognition. The design and operation of the mechanical speech recognizer at University College London. J. British Inst. Radio Eng., 19 (4), 211–229.

    Google Scholar 

  11. Furui, S. (1986). Speaker independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans. Acoust., Speech, Signal Process., 34, 52–59.

    Google Scholar 

  12. Furui, S. (2004). Speech-to-text and speech-to-speech summarization of spontaneous speech. IEEE Trans. Speech Audio Process., 12, 401–408.

    Google Scholar 

  13. Furui, S. (2004). Fifty years of progress in speech and speaker recognition. In: Proc. 148th Acoustical Society of America Meeting, San Diego, CA, 2497.

    Google Scholar 

  14. Furui, S. (2005). Recent progress in corpus-based spontaneous speech recognition. IEICE Trans. Inf. Syst., E88-D (3), 366–375.

    Google Scholar 

  15. Gales, M. J. F., Young, S. J. (1993). Parallel model combination for speech recognition in noise. Technical Report, CUED/F-INFENG/TR135.

    Google Scholar 

  16. Itakura, F. (1975). Minimum prediction residual applied to speech recognition. IEEE Trans. Acoust., Speech, Signal Process., 23, 67–72.

    Google Scholar 

  17. Jelinek, F. (1985). The development of an experimental discrete dictation recognizer. Proc. IEEE, 73 (11), 1616–1624.

    Google Scholar 

  18. Jelinek, F., Bahl, L., Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Trans. Inf. Theory, 21, 250–256.

    MATH  Google Scholar 

  19. Juang, B. H., Furui, S. (2000). Automatic speech recognition and understanding: A first step toward natural human-machine communication. Proc. IEEE, 88 (8), 1142–1165.

    Google Scholar 

  20. Juang, B. H., Rabiner, L. R. (2005). Automatic speech recognition: History. Brown, K. (ed) Encyclopedia of Language and Linguistics, Second Edition, Oxford: Elsevier, New York, 11, 806–819.

    Google Scholar 

  21. Junqua, J. C., Haton, J. P. (1996). Robustness in Automatic Speech Recognition. Kluwer, Boston.

    Google Scholar 

  22. Katagiri, S. (2003). Speech pattern recognition using neural networks. Chou, W., Juang, B. H. (eds) Pattern Recognition in Speech and Language Processing. CRC Press, New York, 115–147.

    Google Scholar 

  23. Kawahara, T., Lee, C. H., Juang, B. H. (1998). Key-phrase detection and verification for flexible speech understanding. IEEE Trans. Speech Audio Process, 6, 558–568.

    Google Scholar 

  24. Klatt, D. (1977). Review of the ARPA speech understanding project. J. Acoust. Soc. Am., 62 (6), 1324–1366.

    Google Scholar 

  25. Koo, M. W., Lee, C. H., Juang, B. H. (2001). Speech recognition and utterance verification based on a generalized confidence score. IEEE Trans. Speech Audio Process, 9, 821–832.

    Google Scholar 

  26. Lee, C. H., Giachin, E., Rabiner, L. R., Pieraccini, R., Rosenberg, A. E. (1990). Acoustic modeling for large vocabulary speech recognition. Comput. Speech Lang., 4, 127–165.

    Google Scholar 

  27. Lee, C. H., Rabiner, L. R. (1989). A frame synchronous network search algorithm for connected word recognition. IEEE Trans. Acoust., Speech, Signal Process, 37, 1649–1658.

    Google Scholar 

  28. Lee, K. F., Hon, H., Reddy, R. (1990). An overview of the SPHINX speech recognition system. IEEE Trans. Acoust., Speech, Signal Process, 38, 600–610.

    Google Scholar 

  29. Leggetter, C. J., Woodland, P. C. (1995). Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Comput. Speech Lang., 9, 171–185.

    Google Scholar 

  30. Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Mag., 4 (2), 4–22.

    Google Scholar 

  31. Lippmann, R. P. (1997). Speech recognition by machines and humans. Speech Communication, 22, 1–15.

    Google Scholar 

  32. Liu, Y., Shriberg, E., Stolcke, A., Peskin, B., Ang, J., Hillard, D., Ostendorf, M., Tomalin, M., Woodland, P. C., Harper, M. (2005). Structural metadata research in the EARS program. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Montreal, Canada, V, 957–960.

    Google Scholar 

  33. Lowerre, B. (1980). The HARPY speech understanding system. Lea, W (ed) Trends in Speech Recognition. Prentice Hall, NJ, 576–586.

    Google Scholar 

  34. Martin, T. B., Nelson, A. L., Zadell, H. J. (1964). Speech recognition by feature abstraction techniques. Technical Report AL-TDR-64-176, Air Force Avionics Lab.

    Google Scholar 

  35. Moore, R. C. (1997). Using natural-language knowledge sources in speech recognition. Ponting, K. (ed) Computational Models of Speech Pattern Processing. Springer, Berlin, 304–327.

    Google Scholar 

  36. Myers, C. S., Rabiner, L. R. (1981). A level building dynamic time warping algorithm for connected word recognition. IEEE Trans. Acoust., Speech, Signal Process., 29, 284–297.

    MATH  Google Scholar 

  37. Nagata, K., Kato, Y., Chiba, S. (1963). Spoken digit recognizer for Japanese language. NEC Res. Develop., 6.

    Google Scholar 

  38. Olson, H. F., Belar, H. (1956). Phonetic typewriter. J. Acoust. Soc. Am., 28 (6), 1072–1081.

    Google Scholar 

  39. Paul, D. B. (1989). The Lincoln robust continuous speech recognizer. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Glasgow, Scotland, 449–452.

    Google Scholar 

  40. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77 (2), 257–286.

    Google Scholar 

  41. Rabiner, L. R., Juang, B. H. (1993). Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cliff, NJ.

    Google Scholar 

  42. Rabiner, L. R., Levinson, S. E., Rosenberg, A. E. (1979). Speaker independent recognition of isolated words using clustering techniques. IEEE Trans. Acoust., Speech, Signal Process., 27, 336–349.

    MATH  Google Scholar 

  43. Reddy, D. R. (1966). An approach to computer speech recognition by direct analysis of the speech wave. Technical Report No. C549, Computer Science Department, Stanford University, Stanford.

    Google Scholar 

  44. Sakai, T., Doshita, S. (1962). The phonetic typewriter, information processing. In: Proc. IFIP Congress, Munich.

    Google Scholar 

  45. Sakoe, H. (1979). Two level DP matching – a dynamic programming based pattern matching algorithm for connected word recognition. IEEE Trans. Acoust., Speech, Signal Process., 27, 588–595.

    Google Scholar 

  46. Sakoe, H., Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust., Speech, Signal Process., 26, 43–49.

    MATH  Google Scholar 

  47. Shinoda, K., Lee, C. H. (2001). A structural Bayes approach to speaker adaptation. IEEE Trans. Speech Audio Process., 9, 276–287.

    Google Scholar 

  48. Soltau, H., Kingsbury, B., Mangu, L., Povey, D., Saon, G., Zweig, G. (2005). The IBM 2004 conversational telephone system for rich transcription. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Montreal, Canada, I, 205–208.

    Google Scholar 

  49. Suzuki, J., Nakata, K. (1961). Recognition of Japanese vowels – preliminary to the recognition of speech. J. Radio Res. Lab., 37 (8), 193–212.

    Google Scholar 

  50. Tappert, C., Dixon, N. R., Rabinowitz, A. S., Chapman, W. D. (1971). Automatic recognition of continuous speech utilizing dynamic segmentation, dual classification, sequential decoding and error recovery. Rome Air Dev. Cen, Rome, NY, Technical Report TR 71–146.

    Google Scholar 

  51. Varga, P., Moore, R. K. (1990). Hidden Markov model decomposition of speech and noise. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Albuquerque, New Mexico, 845–848.

    Google Scholar 

  52. Velichko, V. M., Zagoruyko, N. G. (1970). Automatic recognition of 200 words. Int. J. Man-Machine Studies, 2, 223–234.

    Google Scholar 

  53. Vintsyuk, T. K. (1968). Speech discrimination by dynamic programming. Kibernetika, 4 (2), 81–88.

    MathSciNet  Google Scholar 

  54. Viterbi, J. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Trans. Inf. Theory, 13, 260–269.

    MATH  Google Scholar 

  55. Waibel, A., Hanazawa, T., Hinton, G., Shiano, K., Lang, K. (1989). Phoneme recognition using time-delay neural networks. IEEE Trans. Acoust., Speech, Signal Process., 37, 393–404.

    Google Scholar 

  56. Weintraub, M., Murveit, H., Cohen, M., Price, P., Bernstein, J., Bell, G. (1989). Linguistic constraints in hidden Markov model based speech recognition. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Glasgow, Scotland, 699–702.

    Google Scholar 

  57. Zue, V., Glass, J., Phillips, M., Seneff, S. (1989). The MIT summit speech recognition system, a progress report. In: Proc. DARPA Speech and Natural Language Workshop, Philadelphia, PA, 179–189.

    Google Scholar 

  58. Zweig, G. (1998). Speech recognition with dynamic Bayesian networks. Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaoki Furui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Furui, S. (2010). History and Development of Speech Recognition. In: Chen, F., Jokinen, K. (eds) Speech Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73819-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73819-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-73818-5

  • Online ISBN: 978-0-387-73819-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics