Skip to main content

FDTD Spectroscopic Study of Metallic Nanostructures: On the Pertinent Employment of Tabulated Permittivities

  • Chapter
One-Dimensional Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 3))

Abstract

We investigate the plasmonic properties of silver nanowires. By comparing our computations with previously published experimental results, we propose a way to correct tabulated permittivities to obtain a better description of the dispersive properties of this kind of structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Imura, T. Nagahara, and H. Okamoto. Plasmon mode imaging of single gold nanorods. J. Am. Chem. Soc., 126:12730–12731, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. K. Imura, T. Nagahara, and H. Okamoto. Near-field optical imaging of plasmon modes in gold nanorods. J. Chem. Phys., 122:154701, 2005.

    Article  PubMed  ADS  CAS  Google Scholar 

  3. R.M. Dickson and L.A. Lyon. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B, 104:6095–6098, 2000.

    Article  CAS  Google Scholar 

  4. J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.-P. Goudonnet. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B, 60: 9061–9067, 1999.

    Article  ADS  CAS  Google Scholar 

  5. C. Girard. Near fields in nanostructures. Rep. Prog. Phys., 68:1883–1933, 2005.

    Article  ADS  Google Scholar 

  6. T. Laroche and C. Girard. Near-field optical properties of single plasmonic nanowires. Appl. Phys. Lett., 89:233119, 2006.

    Article  ADS  CAS  Google Scholar 

  7. F.I. Baida and D. Van Labeke. Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays. Phys. Rev. B, 67:155314, 2003.

    Article  ADS  CAS  Google Scholar 

  8. T. Laroche, F.I. Baida, and D. Van Labeke. Three-dimensional finite-difference time domain study of enhanced second-harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip. J. Opt. Soc. Am. B, 22:1045–1051, 2005.

    Article  ADS  CAS  Google Scholar 

  9. A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle. Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method. Appl. Phys. B 84(1–2):111–115, 2006.

    Article  ADS  CAS  Google Scholar 

  10. K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotroptic media. IEEE T. Antenn. Propag., 14:302–307, 1966.

    Article  MATH  ADS  Google Scholar 

  11. A. Taflove and S.C. Hagness. Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. Artech House, Boston, 2000.

    MATH  Google Scholar 

  12. K.S. Kunz and R.J. Luebbers. The Finite-Difference Time-Domain Method for Electromagnetics. CRC Press, New York, 1993.

    Google Scholar 

  13. D.M. Sullivan. Electromagnetic Simulation Using the FDTD Method. Wiley-IEEE Press, 2000.

    Google Scholar 

  14. M.C. Beard and C.A. Schmuttenmaer. Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments. J. Chem. Phys., 114(7):2903–2909, 2001.

    Article  ADS  CAS  Google Scholar 

  15. M. Moskovits, I. Srnová-Sloufová, and B. Vlcková. Bimetallic ag-au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys., 116(23):10435–10446, 2002.

    Article  ADS  CAS  Google Scholar 

  16. N.G. Skinner and D.M. Byrne. Finite-difference time-domain analysis of frequency-selective surfaces in the mid-infrared. Appl. Opt., 45(9):1943–1950, 2006.

    Article  PubMed  ADS  Google Scholar 

  17. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle. Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with the FDTD method. Phys. Rev. B, 71(8):085416–085422, 2005.

    Article  ADS  CAS  Google Scholar 

  18. T. Grosges, A. Vial, and D. Barchiesi. Models of near-field spectroscopic studies: comparison between finite-element and finite-difference methods. Opt. Express, 13(21):8483–8497, 2005.

    Article  PubMed  ADS  CAS  Google Scholar 

  19. A. Hohenau, J.R. Krenn, J. Beermann, S.I. Bozhevolnyi, S.G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal. Spectroscopy and nonlinear microscopy of au nanoparticle arrays: experiment and theory. Phys. Rev. B, 73(15):155404, 2006.

    Article  ADS  CAS  Google Scholar 

  20. T.-W. Lee and S.K. Gray. Subwavelength light bending by metal slit structures. Opt. Express, 13(24):9652–9659, 2005.

    Article  PubMed  ADS  Google Scholar 

  21. H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera. Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization. Phys. Rev. Lett., 98(10):107402, 2007.

    Article  PubMed  ADS  CAS  Google Scholar 

  22. G. Parent, D. Van Labeke, and F.I. Baida. Theoretical study of transient phenomena in near-field optics. J. Microsc., 202(2):296–306, 2001.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  23. R. Qiang, R.L. Chen, and J. Chen. Modeling electrical properties of gold films at infrared frequency using fdtd method. Int. J. Infrared Millimeter Waves, 25(8):1263–1270, 2004.

    Article  ADS  CAS  Google Scholar 

  24. A. Mohammadi and Mario Agio. Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces. Opt. Express, 14(23): 11330–11338, 2006.

    Article  PubMed  ADS  Google Scholar 

  25. P.G. Etchegoin, E.C. Le Ru, and M. Meyer. An analytic model for the optical properties of gold. J. Chem. Phys., 125:164705, 2006.

    Article  PubMed  ADS  CAS  Google Scholar 

  26. C.F. Bohren and D.R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley, 1983.

    Google Scholar 

  27. E.D. Palik, editor. Handbook of Optical Constants of Solids. Academic Press, 1985.

    Google Scholar 

  28. H. Ditlbacher, A. Hohenau, D. wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, and J.R. Krenn. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett., 95:257403, 2005.

    Article  PubMed  ADS  CAS  Google Scholar 

  29. P. Ghenuche, R. Quidant, and G. Badenes. Cumulative plasmon field enhancement in finite metal particle chains. Opt. Lett., 30:1882–1884, 2005.

    Article  PubMed  ADS  Google Scholar 

  30. C. Girard and E. Dujardin. Near-field optical properties of top-down and bottom-up nanostructures. J. Opt. A 8:s73–s86, 2005.

    Google Scholar 

  31. C. Girard and R. Quidant. Near-field optical transmittance of metal paticle chain waveguides. Opt. Express, 12:6141–6146, 2004.

    Article  PubMed  ADS  Google Scholar 

  32. E.D. Palik (Ed). Handbook of Optical Constants of Solids, Vol. II, Academic Press, 1991.

    Google Scholar 

  33. P.B. Johnson and R.W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6: 4370–4379, 1972.

    Article  ADS  CAS  Google Scholar 

  34. M.J. Weber. Handbook of Optical Materials. CRC Press, 2003.

    Google Scholar 

  35. S. Kawata, editor. Near-field optics and surface plasmon polaritons, Springer, chapter 5, pp 97–122, 2001.

    Google Scholar 

  36. D. Macías, A. Vial, and D. Barchiesi. Application of evolution strategies for the solution of an inverse problem in near-field optics. J. Opt. Soc. Am. A, 21:1465–1471, 2004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Laroche, T., Vial, A. (2008). FDTD Spectroscopic Study of Metallic Nanostructures: On the Pertinent Employment of Tabulated Permittivities. In: Wang, Z.M. (eds) One-Dimensional Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74132-1_7

Download citation

Publish with us

Policies and ethics