Skip to main content

γ-Secretase Regulates VEGFR-1 Signalling in Vascular Endothelium and RPE

  • Chapter
Recent Advances in Retinal Degeneration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 613))

Neovascular diseases of the eye include retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and the exudative or “wet” form of age-relatedmacular degeneration (AMD). Together these diseases affect all age groups and are the leading causes of vision impairment in developed nations (Lee et al., 1998). The collective evidence suggests that the vascular endothelial growth factor (VEGF) family is critical for ocular angiogensis (Cai and Boulton, 2002; Grant et al., 2004). First, increasing VEGF in animal models promotes ocular neovascularization and this can be reversed by neutralizing VEGF or its receptors(vanWijngaarden et al., 2005; Witmer et al., 2003). Second, VEGF is hypoxia-inducible and thus dramatically upregulated by the hypoxic environment in ROP and PDR (Grant et al., 2004; Witmer et al., 2003). Third, treatment of AMD patients with CNV with VEGF inhibitors such as Macugen or Lucentis significantly reduces choroidal neovascularization (vanWijngaarden et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autiero, M., et al., 2003. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med. 9, 936–43.

    Article  PubMed  CAS  Google Scholar 

  • Bussolati, B., et al., 2001. Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am J Pathol. 159, 993–1008.

    PubMed  CAS  Google Scholar 

  • Cai, J., Boulton, M., 2002. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye. 16, 242–60.

    Article  PubMed  CAS  Google Scholar 

  • Cai, J., et al., 2006. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem. 281, 3604–13.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N., 2005. The role of VEGF in the regulation of physiological and pathological angiogenesis. Exs. 209–31.

    Google Scholar 

  • Grant, M. B., et al., 2004. The role of growth factors in the pathogenesis of diabetic retinopathy. Expert Opin Investig Drugs. 13, 1275–93.

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom, M., et al., 2007. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 445, 776–80.

    Article  PubMed  Google Scholar 

  • Hiratsuka, S., et al., 1998. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A. 95, 9349–54.

    Article  PubMed  CAS  Google Scholar 

  • Kanning, K. C., et al., 2003. Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci. 23, 5425–36.

    PubMed  CAS  Google Scholar 

  • Landman, N., Kim, T. W., 2004. Got RIP? Presenilin-dependent intramembrane proteolysis in growth factor receptor signaling. Cytokine Growth Factor Rev. 15, 337–51.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P., et al., 1998. Ocular neovascularization: an epidemiologic review. Surv Ophthalmol. 43, 245–69.

    Article  PubMed  CAS  Google Scholar 

  • Luttun, A., et al., 2002. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med. 8, 831–40.

    PubMed  CAS  Google Scholar 

  • Marambaud, P., et al., 2002. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. Embo J. 21, 1948–56.

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo, P., et al., 2005. Dissociated phenotypes in presenilin transgenic mice define functionally distinct gamma-secretases. Proc Natl Acad Sci U S A. 102, 8972–7.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, Y., et al., 2006. Ets-1-dependent Expression of vascular endothelial growth factor receptors is activated by latency-associated nuclear antigen of Kaposi’s Sarcoma-associated herpesvirus through interaction with daxx. J Biol Chem. 281, 28113–21.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, M., et al., 2006. Presenilin-1 controls the growth and differentiation of endothelial progenitor cells through its beta-catenin-binding region. Cell Biol Int. 30, 239–43.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, M., et al., 2003. Abnormal blood vessel development in mice lacking presenilin-1. Mech Dev. 120, 657–67.

    Article  PubMed  CAS  Google Scholar 

  • Ni, C. Y., et al., 2001. gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science. 294, 2179–81.

    Article  PubMed  CAS  Google Scholar 

  • Nozaki, M., et al., 2006. Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A. J Clin Invest. 116, 422–9.

    Article  PubMed  CAS  Google Scholar 

  • Rahimi, N., 2006. VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front. Biosci. 11, 818–829.

    CAS  Google Scholar 

  • Rahimi, N., et al., 2000. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J Biol Chem. 275, 16986-92.

    Article  PubMed  CAS  Google Scholar 

  • Rawson, R. B., 2002. Regulated intramembrane proteolysis: from the endoplasmic reticulum to the nucleus. Essays Biochem. 38, 155–68.

    PubMed  CAS  Google Scholar 

  • Roberts, D. M., et al., 2004. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am J Pathol. 164, 1531–5.

    PubMed  CAS  Google Scholar 

  • Sainson, R. C., et al., 2005. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J. 19, 1027–29.

    PubMed  CAS  Google Scholar 

  • Selkoe, D., Kopan, R., 2003. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 26, 565–97.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., et al., 2006. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 13, 225–34.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, M., Claesson-Welsh, L., 2006. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 312, 549–60.

    Article  PubMed  CAS  Google Scholar 

  • vanWijngaarden, P., et al., 2005. Inhibitors of ocular neovascularization: promises and potential problems. Jama. 293, 1509–13.

    Article  PubMed  Google Scholar 

  • Witmer, A. N., et al., 2003. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 22, 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, M. S., 2006. The gamma-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry. 45, 7931–39.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, H., et al., 2001. Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 276, 26969–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Boulton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boulton, M.E., Cai, J., Grant, M.B., Zhang, Y. (2008). γ-Secretase Regulates VEGFR-1 Signalling in Vascular Endothelium and RPE. In: Anderson, R.E., LaVail, M.M., Hollyfield, J.G. (eds) Recent Advances in Retinal Degeneration. Advances in Experimental Medicine and Biology, vol 613. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74904-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74904-4_36

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-74902-0

  • Online ISBN: 978-0-387-74904-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics