Skip to main content

Calcium Dynamics

  • Chapter
Mathematical Physiology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 8/1))

Calcium is critically important for a vast array of cellular functions, as can be seen by a quick look through any physiology book. For example, in this book we discuss the role that Ca2+ plays in muscle mechanics, cardiac electrophysiology, bursting oscillations and secretion, hair cells, and adaptationin photoreceptors, among other things. Clearly, the mechanisms by which a cell controls its Ca2+ concentration are of central interest in cell physiology.

There are a number of Ca2+ control mechanisms operating on different levels, all designed to ensure that Ca2+ is present in sufficient quantity to perform its neces sary functions, but not in too great a quantity in the wrong places. Prolonged high cytoplasmic concentrations of Ca2+ are toxic. For example, cellular Ca2+ overload can trigger apoptotic cell death, a process in which the cell kills itself. In muscle cells, high intracellular Ca2+ is responsible for prolonged muscle tension and rigor mortis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keener, J., Sneyd, J. (2009). Calcium Dynamics. In: Keener, J., Sneyd, J. (eds) Mathematical Physiology. Interdisciplinary Applied Mathematics, vol 8/1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75847-3_7

Download citation

Publish with us

Policies and ethics