Skip to main content

Piezoelectric actuators are getting immiscible parts of many important electromechanical and smart systems. Smart systems consist mainly of sensors, actuators, and signal processing units. Actuators are the responding units of many smart systems including those for active vibration and noise control, valve, shutter, focal lens, and many others. Increased demand for actuators with high displacement, high generative force, and quick response time has led to a search for new actuator materials and new designs. In this chapter, first, piezoelectric actuators were compared with magnetically active and thermally active actuators. Second, piezoelectric actuators and their design, especially traditional piezoelectric transducers with newly designed flextensional transducers were compared. Finally, application-related issues have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aburatani H, Uchino K (1995) Destruction Mechanism and Destruction Detection Technique for Multilayer Ceramic Actuators. IEEE, Piscataway, NJ, 750-752.

    Google Scholar 

  • Cady WG (1964) Piezoelectricity. Mc Graw-Hill, New York.

    Google Scholar 

  • Cieminski VJ, Beige HJ (1991) High-Signal Electrostriction in Ferroelectric Materials. Phys. D 24:1182-1186.

    Article  Google Scholar 

  • Clark AE (1980) Magnetostrictive Materials. Ferromagn. Mater. 1:531.

    Article  Google Scholar 

  • Clark AE, Teter JP, McMasters OD (1988) Magnetostriction ‘Jumps’ in Twinned Tb0.3 Dy0.7 Fe1.9 . J. Appl. Phys. 63:3910-3912.

    Article  Google Scholar 

  • Cross LE (1967) Antiferroelectric-Ferroelectric Switching in a Simple ‘Kittel’ Antiferroelectric. J. Phys. Soc. Jpn. 23:77-82.

    Article  Google Scholar 

  • Cross LE, Young SJ, Newnham RE, Nomura S, Uchino K (1980) Large Electrostrictive Effects in Relaxor Ferroelectrics. Ferroelectrics. 23:187.

    Google Scholar 

  • Dalimier E, Dainty C (2005) Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics. Opt. Exp. 13:4275-4285.

    Article  Google Scholar 

  • Dausch DE (1997) Ferroelectric Polarization Fatigue in PZT-Based RAINBOWs and Bulk Ceram-ics. J. Am. Ceram. Soc. 80:2355-2360.

    Google Scholar 

  • Dausch DE, Wise SA (1998) Composition Effects on Electromechanical Degradation of RAIN-BOW Actuators. NASA, Hampton, VA, NASA/TM-1998-206282, 2-3.

    Google Scholar 

  • Do gan A, Uchino K, Newnham RE (1997) Composite Piezoelectric Transducer with Truncated Conical Endcaps, Cymbal. IEEE UFFC 44:597-605.

    Google Scholar 

  • Do gan A, Uzgur E (2006) Size and Material Effects on Cymbal Transducer for Actuator Applica-tions. Ferroelectrics 331:53-63.

    Article  Google Scholar 

  • Do gan A, Xu QC, Yoshikawa S, Uchino K, Newnham RE (1994) High Displacement Ceramic Metal Composite Actuators Moonies. Ferroelectrics 156:1-6.

    Article  Google Scholar 

  • Do gan A, Yoshikawa S, Uchino K, Newnham RE (1994) The Effect of Geometry on the Charac-teristics of the Moonies Transducer and Reliability Issue. ISAF-IEEE Proc. 2:935-939.

    Google Scholar 

  • Duering T, Melton KN, Stockel D, Wayman CM (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, Boston, MA.

    Google Scholar 

  • Furuka K, Uchino K (1986) Electric-Field-Induced Strain in (Pb,La)(Zr,Ti)O3 Ceramics. Adv. Ceram. Mater. 1:61-63.

    Google Scholar 

  • Goto H, Imanaka K (1991) Super Compact Dual Axis optical Scanning Unit Applying a Torsional Spring Resonator Driven by a Piezoelectric Actuator. SPIE Proc.1544:272-281.

    Google Scholar 

  • Haertling GH (1994) A New Type of Ultra-High-Displacement Actuator. Am. Ceram. Soc. Bull. 73:93-96.

    Google Scholar 

  • Haertling GH (1994) Chemically Reduced PLZT Ceramics for Ultra-High Displacement Actua-tors. Ferroelectrics 154:101-106.

    Google Scholar 

  • Haertling GH, Land C (1971) Hot-Pressed (Pb, La) (Zr, Ti) O3 Ferroelectric Ceramics for Elec-trooptic Applications. J. Am. Ceram. Soc. 54:1-11.

    Article  Google Scholar 

  • Hallbaum FR, Bryant RG, Fox RL (1997) Thin Layer Composite Unimorph Ferroelectric Driver and Sensor. US Patent 5,632,841.

    Google Scholar 

  • Hathaway KB, Clark AE (1993) Magnetostrictive Materials. MRS Bull. 18:34-41

    Google Scholar 

  • Hayes HC (1936) Sound Generating and Directing Apparatus. US Patent 2,064,911.

    Google Scholar 

  • Imanaka K (1992) Microhybrid Integrated Devices and Components, Micro Photonic Devices. SPIE Proc. 1751:343-353.

    Article  Google Scholar 

  • Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric Ceramics. Academic Press, New York. Kittel C (1951) Theory of Antiferroelectrics. Phys. Rev. 82:729.

    Google Scholar 

  • Kugel VD, Chandren S, Cross LE (1997) A Comparative Analysis of Piezoelectric Bending-Mode Actuators. SPIE Proc. Smart Struct. Mater. Smart Mater. Technol. 3040:70-80.

    Google Scholar 

  • Mamiya Y (2006) Application of Piezoelectric Actuator. NEC Technol. J. 1:82-86.

    Google Scholar 

  • Newnham RE, Do gan A (1998) Metal-Electroactive Ceramic Composite Transducer. US Patent 5,729,07.

    Google Scholar 

  • Newnham RE, Xu QC, Yoshikawa S (1991) US Patent 999,819.

    Google Scholar 

  • Oh KY, Furuta A, Uchino K (1990) Shape Memory Unimorph Actuators Using Lead Zirconate-Based Antiferroelectrics. J. Jpn. Ceram. Soc. 98:905-908.

    Google Scholar 

  • Onitsuka K, Do gan A, Tressler JF, Xu QC, Yoshikawa S, Newnham RE (1995) Metal-Ceramic Composite Transducer, The Moonie. J. Int. Mater. Syst. Struct. 6:447-455.

    Article  Google Scholar 

  • Pinkerton JL, Moses RW (1997) A feasibility Study to Control Airfoil Shape Using THUNDER. NASA, Hampton, VA, NASA TM 4767:6-7.

    Google Scholar 

  • Rolt KD (1990) History of Flextensional Electro-Acoustic Transducers. J. Acoust. Soc. Am. 87:1340-1345.

    Article  Google Scholar 

  • Royster LH (1968) Flextensional Underwater Acoustic Transducers. J. Acoust. Soc. Am. 45: 671-683.

    Article  Google Scholar 

  • Shih WY, Shih WH, Aksay I (1997) Scaling Analysis for the Axial Displacement and Pressure of Flextensional Transducers. J. Am. Ceram. Soc. 80:1073-1078.

    Article  Google Scholar 

  • Sugawara Y, Onitsuka K, Yoshikawa S, Xu QC, Newnham RE, Uchino K (1992) Metal-Ceramic Composite Actuator. J. Am. Ceram. Soc. 75:996-998.

    Article  Google Scholar 

  • Takahashi S (1989) Recent Developments in Multilayer Piezoelectric Ceramic Actuators and Their Applications. Ferroelectrics 91:293-302.

    Google Scholar 

  • Taleghani BK, Camphell JF (1999) Non-Linear FEM of Thunder Piezoelectric Actuators. NASA, Hampton, VA, NASA/TM-1999-209322:8-9.

    Google Scholar 

  • Tokin Co (1992) Multilayer Piezoelectric Actuators. Short Form Catalog, Tokyo.

    Google Scholar 

  • Toulis WJ (1966) Flexual-Extensional Electromechanical Transducer. US Patent 3,277,433.

    Google Scholar 

  • Tressler JF, Xu QC, Yoshikawa S, Uchino K, Newnham RE (1994) Composite Flextensional Trans-ducers for Sensing and Actuating. Ferroelectrics 156:67-72.

    Google Scholar 

  • Uchino K (1993) Ceramic Actuators Principles and Applications. MRS Bull. 18:42-48.

    Google Scholar 

  • Uchino K (1997) Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic, Boston.

    Google Scholar 

  • Uchino K (1989) Recent Topics of Ceramic Actuators. Ferroelectrics 91:281-292.

    Google Scholar 

  • Uchino K, Giniewicz JR (2002) Micromechatronics. Marcel Dekker, New York/Basel.

    Google Scholar 

  • Uchino K, Nomura S, Cross LE, Newnham RE (1980) Electrostriction in Perovskite Crystal and Its Applications for Transducers. J. Phys. Soc. Jpn. 49:45-48.

    Google Scholar 

  • Uchino K, Takahashi S (1996) Multilayer Ceramic Actuators. Solid State Mater. Sci. 1:698-705.

    Google Scholar 

  • Uzgur E, Do gan A, Markley D, Meyer RJ, Hladky-Henion AC, Newnham RE (2004) Materials for High Performance Cymbal Transducer. J. Electroceram. 13:403-407.

    Article  Google Scholar 

  • Uzgur E, Do gan A, Newnham RE (2002) Design Optimization of Piezoelectric Composite Trans-ducers using Finite Element Analysis. Key Eng. Mater. 206-213:129-1300.

    Google Scholar 

  • Xu QC, Do gan A, Tressler JF, Yoshikawa S, Newnham RE (1994) Ceramic Metal Composite Actuator. Ferroelectrics. 160:337-346.

    Google Scholar 

  • Wayman CM (1993) Shape Memory Alloys. MRS Bull. 18:49-56.

    Google Scholar 

  • Wayman CM, Shimizu K (1972) Shape Memory effects in Alloys. Met Sci. J. 6:175.

    Article  Google Scholar 

  • Welch S, Doel P, Greenaway A, Love G (2003) Smart Optics in Astronomy and Space. Smart Opt. 44:26-29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

ÂĐ 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DogĖƒan*, A., Uzgur, E. (2008). Piezoelectric Actuator Designs. In: Safari, A., Akdoğan, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76540-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76540-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76538-9

  • Online ISBN: 978-0-387-76540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics