Skip to main content

Targeting Opioid Receptor Heterodimers: Strategies for Screening and Drug Development

  • Chapter
Drug Addiction

Abstract

G-protein-coupled receptors are a major target for the development of new marketable drugs. A growing number of studies have shown that these receptors could bind to their ligands, signal, and be internalized as dimers. Most of the evidence comes from in vitro studies, but recent studies using animal models support an important role for dimerization in vivo and in human pathologies. It is therefore becoming highly relevant to include dimerization in screening campaigns: the increased complexity reached by the ability to target 2 receptors should lead to the identification of more specific hits that could be developed into drugs with fewer side effects. In this review, we have summarized results from a series of studies characterizing the properties of G-protein-coupled receptor dimers using both in vitro and in vivo systems. Since opioid receptors exist as dimers and heterodimerization modulates their pharmacology, we have used them as a model system to develop strategies for the identification of compounds that will specifically bind and activate opioid receptor heterodimers: such compounds could represent the next generation of pain relievers with decreased side effects, including reduced drug abuse liability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kieffer BL. Recent advances in molecular recognition and signal transduction of active pep-tides: receptors for opioid peptides. Cell Mol Neurobiol. 1995;15:615-635.

    Article  CAS  PubMed  Google Scholar 

  2. George SR, O’Dowd BF, Lee SP. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov. 2002;1:808-820.

    Article  CAS  PubMed  Google Scholar 

  3. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic recep-tors provide evidence for intermolecular “cross-talk” between G-protein linked-receptors. Proc Natl Acad Sci USA. 1993;90:3103-3107.

    Article  CAS  PubMed  Google Scholar 

  4. Rios CD, Jordan BA, Gomes I, Devi LA. G-protein receptor dimerization: modulation of receptor function. Pharmacol Ther. 2001;92:71-87.

    Article  CAS  PubMed  Google Scholar 

  5. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G-protein coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol. 2002;42:409-435.

    Article  CAS  PubMed  Google Scholar 

  6. Bai M. Dimerization of G-protein coupled receptors: roles in signal transduction. Cell Signal. 2004;16:175-186.

    Article  CAS  PubMed  Google Scholar 

  7. Kroeger KM, Pfleger KD, Eidne KA. G-protein coupled receptor oligomerization in neuroen-docrine pathways. Front Neuroendocrinol. 2003;24:254-278.

    Article  CAS  PubMed  Google Scholar 

  8. Marshall FH, Jones KA, Kaupman K, Bettler B. GABA(B) receptors: the first 7TM het-erodimers. Trends Pharmacol Sci. 1999;20:396-399.

    Article  CAS  PubMed  Google Scholar 

  9. Gomes I, Devi LA. Receptor-receptor interactions modulate opioid receptor function. In: Madras BH, Colvis CM, Pollock D, Rutter JL, Shurtleff D, Von Zastrow M, eds. Cell Biology of Addiction. New York, NY: Cold Spring Harbor Laboratory Press; 2005.

    Google Scholar 

  10. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci. 2001;2:274-286.

    Article  CAS  PubMed  Google Scholar 

  11. Jordan BA, Devi LA. G-protein coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697-700.

    Article  CAS  PubMed  Google Scholar 

  12. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci. 2000;20:RC110.

    CAS  PubMed  Google Scholar 

  13. George SR, Fan T, Xie Z, et al. Oligomerization of mu and delta opioid receptors: generation of novel functional properties. J Biol Chem. 2000;275:26128-26135.

    Article  CAS  PubMed  Google Scholar 

  14. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA. A role for heterodimerization of µ and δ opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA. 2004;101:5135-5139.

    Article  CAS  PubMed  Google Scholar 

  15. Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S. Heterodimerization of soma-tostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensiti-zation. J Biol Chem. 2002;277:19762-19772.

    Article  CAS  PubMed  Google Scholar 

  16. Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA. Functional interactions between µ opioid and α2A-adrenergic receptors. Mol Pharmacol. 2003;64:1317-1324.

    Article  CAS  PubMed  Google Scholar 

  17. Rios C, Gomes I, Devi LA. Interactions between delta opioid receptors and alpha-adrenocep-tors. Clin Exp Pharmacol Physiol. 2004;31:833-836.

    Article  CAS  PubMed  Google Scholar 

  18. Pfeiffer M, Kirscht S, Stumm R, et al. Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem. 2003;278:51630-51637.

    Article  CAS  PubMed  Google Scholar 

  19. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force micros-copy: rhodopsin dimmers in native disc membranes. Nature. 2003;421:127-128.

    Article  CAS  PubMed  Google Scholar 

  20. AbdAlla S, Lother H, Quitterer U. AT1-receptor heterodimers show enhanced G-protein acti-vation and altered receptor sequestration. Nature. 2000;407:94-98.

    Article  CAS  PubMed  Google Scholar 

  21. Abdalla S, Lother H, el Massiery A, Quitterer U. Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med. 2001;7:1003-1009.

    Article  CAS  PubMed  Google Scholar 

  22. Abdalla S, Lother H, Langer A, el Faramawy Y, Quitterer U. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell. 2004;119:343-354.

    Article  CAS  PubMed  Google Scholar 

  23. Murtra P, Sheasby AM, Hunt SP, De Felipe C. Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature. 2000;405:180-183.

    Article  CAS  PubMed  Google Scholar 

  24. King T, Gardell LR, Wang R, et al. Role of NK-1 neurotransmission in opioid-induced hyper-algesia. Pain. 2005;116:276-288.

    Article  CAS  PubMed  Google Scholar 

  25. Hunyady L, Vauquelin G, Vanderheyden P. Agonist induction and conformational selection during activation of a G-protein-coupled receptor. Trends Pharmacol Sci. 2003;24:81-86.

    Article  CAS  PubMed  Google Scholar 

  26. Cherfils J, Chabre M. Activation of G-protein Galpha subunits by receptors through Galpha-Gbeta and Galpha-Ggamma interactions. Trends Biochem Sci. 2003;28:13-17.

    Article  CAS  PubMed  Google Scholar 

  27. Urwyler S, Pozza MF, Lingenhoehl K, et al. N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther. 2003;307:322-330.

    Article  CAS  PubMed  Google Scholar 

  28. Cryan JF, Kaupmann K. Don’t worry ‘B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26:36-43.

    Article  CAS  PubMed  Google Scholar 

  29. Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L. The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem. 2004;279:29085-29091.

    Article  CAS  PubMed  Google Scholar 

  30. Cryan JF, Kelly PH, Chaperon F, et al. Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimi-dine-4,6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther. 2004;310:952-963.

    Article  CAS  PubMed  Google Scholar 

  31. Knoflach F, Mutel V, Jolidon S, et al. Positive allosteric modulators of metabotropic gluta-mate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci USA. 2001;98:13402-13407.

    Article  CAS  PubMed  Google Scholar 

  32. Conigrave AD, Franks AH. Allosteric activation of plasma membrane receptors: physiological implications and structural origins. Prog Biophys Mol Biol. 2003;81:219-240.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki Y, Moriyoshi E, Tsuchiya D, Jingami H. Negative cooperativity of glutamate binding in the dimeric metabotropic glutamate receptor subtype 1. J Biol Chem. 2004;279:35526-35534.

    Article  CAS  PubMed  Google Scholar 

  34. Gao ZG, Kim SG, Soltysiak KA, Melman N, Ijzerman AP, Jacobson KA. Selective allosteric enhancement of agonist binding and function at human A3 adenosine receptors by a series of imi-dazoquinoline derivatives. Mol Pharmacol. 2002;62:81-89.

    Article  CAS  PubMed  Google Scholar 

  35. Trankle C, Weyand O, Voigtlander U, et al. Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol Pharmacol. 2003;64:180-190.

    Article  PubMed  Google Scholar 

  36. Gille A, Seifert R. Low-affinity interactions of BODIPY-FL-GTPgammaS and BODIPY-FL-GppNHp with G(i)- and G(s)-proteins. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:210-215.

    Article  CAS  PubMed  Google Scholar 

  37. Lembo PM, Grazzini E, Groblewski T, et al. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci. 2002;5:201-209.

    Article  CAS  PubMed  Google Scholar 

  38. Cacace A, Banks M, Spicer T, Civoli F, Watson J. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors. Drug Discov Today. 2003;8:785-792.

    Article  CAS  PubMed  Google Scholar 

  39. Chen L, Zou S, Lou X, Kang HG. Different stimulatory opioid effects on intracellular Ca(2+) in SH-SY5Y cells. Brain Res. 2000;882:256-265.

    Article  CAS  PubMed  Google Scholar 

  40. Yoon SH, Lo TM, Loh HH, Thayer SA. Delta-opioid-induced liberation of Gbetagamma mobilizes Ca2+ stores in NG108-15 cells. Mol Pharmacol. 1999;56:902-908.

    CAS  PubMed  Google Scholar 

  41. Charles AC, Mostovskaya N, Asas K, Evans CJ, Dankovich ML, Hales TG. Coexpression of delta-opioid receptors with micro receptors in GH3 cells changes the functional response to micro agonists from inhibitory to excitatory. Mol Pharmacol. 2003;63:89-95.

    Article  CAS  PubMed  Google Scholar 

  42. Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73:953-990.

    Article  CAS  PubMed  Google Scholar 

  43. Schiller PW, Weltrowska G, Berezowska I, et al. The TIPP opioid peptide family: development of delta antagonists, delta agonists, and mixed mu agonist/delta antagonists. Biopolymers. 1999;51:411-425.

    Article  CAS  PubMed  Google Scholar 

  44. Bryant SD, Salvadori S, Cooper PS, Lazarus LH. New delta-opioid antagonists as pharmaco-logical probes. Trends Pharmacol Sci. 1998;19:42-46.

    Article  CAS  PubMed  Google Scholar 

  45. Durocher Y, Perret S, Thibaudeau E, et al. A reporter gene assay for high-throughput screen-ing of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem. 2000;284:316-326.

    Article  CAS  PubMed  Google Scholar 

  46. Waldhoer M, Fong J, Jones RM, et al. A heterodimer-selective agonist shows in vivo rele-vance of G protein-coupled receptor dimers. Proc Natl Acad Sci USA. 2005;102:9050-9055.

    Article  CAS  PubMed  Google Scholar 

  47. Mesnier D, Baneres JL. Cooperative conformational changes in a G-protein-coupled receptor dimer, the leukotriene B(4) receptor BLT1. J Biol Chem. 2004;279:49664-49670.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi A. Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Gupta, A., Décaillot, F.M., Devi, L.A. (2008). Targeting Opioid Receptor Heterodimers: Strategies for Screening and Drug Development. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_32

Download citation

Publish with us

Policies and ethics