Skip to main content

WNT/β-Catenin Signaling in Adrenocortical Carcinoma

  • Chapter
  • First Online:
Adrenocortical Carcinoma

Abstract

The WNT/β-catenin signaling pathway plays a major role in the development of various tissues, including the adrenal cortex. β-Catenin fulfills a dual role as a structural component in cell–cell adhesion and as the key transcription cofactor of T-cell factor/lymphoid enhancer factor (TCF/LEF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bienz M (2005) Beta-catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15(2):R64–67

    Article  PubMed  CAS  Google Scholar 

  2. Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317–321

    Article  PubMed  CAS  Google Scholar 

  3. Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17(5):459–465

    Article  PubMed  CAS  Google Scholar 

  4. Giles RH et al (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653(1):1–24

    PubMed  CAS  Google Scholar 

  5. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  6. Nusse R (2005) Cell biology: relays at the membrane. Nature 438(7069):747–749

    Article  PubMed  CAS  Google Scholar 

  7. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851

    PubMed  CAS  Google Scholar 

  8. Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20(2):119–125

    Article  PubMed  CAS  Google Scholar 

  9. Liu C et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847

    Article  PubMed  CAS  Google Scholar 

  10. Aberle H et al (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 16(13):3797–3804

    Article  PubMed  CAS  Google Scholar 

  11. Winston JT et al (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13(3):270–283

    Article  PubMed  CAS  Google Scholar 

  12. Townsley FM et al (2004) Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol 6(7):626–633

    Article  PubMed  CAS  Google Scholar 

  13. Clevers H, van de Wetering M (1997) TCF/LEF factor earn their wings. Trends Genet 13(12):485–489

    Article  PubMed  CAS  Google Scholar 

  14. Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9(1):515–21

    Article  Google Scholar 

  15. Behrens J, Lustig B (2004) The Wnt connection to tumorigenesis. Int J Dev Biol 48(5–6):477–487

    Article  PubMed  CAS  Google Scholar 

  16. Johnson ML et al (2004) LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res 19(11):1749–1757

    Article  PubMed  CAS  Google Scholar 

  17. Li L et al (1999) Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. Embo J 18(15):4233–4240

    Article  PubMed  CAS  Google Scholar 

  18. Kishida S et al (1999) DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 19(6):4414–4422

    PubMed  CAS  Google Scholar 

  19. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science 287(5458):1606–1609

    Article  PubMed  CAS  Google Scholar 

  20. Aberle H et al (1994) Assembly of the cadherin–catenin complex in vitro with recombinant proteins. J Cell Sci 107(Pt 12):3655–3663

    PubMed  CAS  Google Scholar 

  21. Hulsken J et al (1994) E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127(6 Pt 2):2061–2069

    Article  PubMed  CAS  Google Scholar 

  22. Yost C et al (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10(12):1443–1454

    Article  PubMed  CAS  Google Scholar 

  23. Munemitsu S et al (1996) Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosphorylation of the adenomatous polyposis coli tumor suppressor protein. Mol Cell Biol 16(8):4088–4094

    PubMed  CAS  Google Scholar 

  24. Rubinfeld B et al (1995) The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin, and plakoglobin. J Biol Chem 270(10):5549–5555

    Article  PubMed  CAS  Google Scholar 

  25. Behrens J et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382(6592):638–642

    Article  PubMed  CAS  Google Scholar 

  26. Aberle H et al (1996) Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to alpha-catenin. J Biol Chem 271(3):1520–1526

    Article  PubMed  CAS  Google Scholar 

  27. Huber O et al (1996) Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 59(1):3–10

    Article  PubMed  CAS  Google Scholar 

  28. Molenaar M et al (1996) XTcf-3 transcription factor mediates betacatenin-induced axis formation in Xenopus embryos. Cell 86(3):391–399

    Article  PubMed  CAS  Google Scholar 

  29. van de Wetering M et al (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88(6):789–799

    Article  PubMed  Google Scholar 

  30. Kraus C et al (1994) Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23(1):272–274

    Article  PubMed  CAS  Google Scholar 

  31. van Hengel J et al (1995) Assignment of the human beta-catenin gene (CTNNB1) to 3p22–>p21.3 by fluorescence in situ hybridization. Cytogenet Cell Genet 70(1–2):68–70

    Article  PubMed  Google Scholar 

  32. Nollet F et al (1996) Genomic organization of the human beta-catenin gene (CTNNB1). Genomics 32(3):413–424

    Article  PubMed  CAS  Google Scholar 

  33. Zeng L et al (1997) The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90(1):181–192

    Article  PubMed  CAS  Google Scholar 

  34. Salahshor S, Woodgett JR (2005) The links between axin and carcinogenesis. J Clin Pathol 58(3):225–236

    Article  PubMed  CAS  Google Scholar 

  35. Fearnhead NS et al (2001) The ABC of APC. Hum Mol Genet 10(7):721–733

    Article  PubMed  CAS  Google Scholar 

  36. Hsu W et al (1999) Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem 274(6):3439–3445

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Y et al (2002) Casein kinase I and casein kinase II differentially regulate axin function in Wnt and JNK pathways. J Biol Chem 277(20):17706–17712

    Article  PubMed  CAS  Google Scholar 

  38. Satoh S, et al (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24(3):245–250

    Article  PubMed  CAS  Google Scholar 

  39. Dong X et al (2001) Genomic structure, chromosome mapping and expression analysis of the human AXIN2 gene. Cytogenet Cell Genet 93(1–2):26–28

    Article  PubMed  CAS  Google Scholar 

  40. Jho EH et al (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183

    Article  PubMed  CAS  Google Scholar 

  41. Lustig B et al (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22(4):1184–1193

    Article  PubMed  CAS  Google Scholar 

  42. Yan D et al (2001) Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta-catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA 98(26):14973–14978

    Article  PubMed  CAS  Google Scholar 

  43. Bienz M (2002) The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol 3(5):328–338

    Article  PubMed  CAS  Google Scholar 

  44. Kinzler KW et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665

    Article  PubMed  CAS  Google Scholar 

  45. Groden J et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66(3):589–600

    Article  PubMed  CAS  Google Scholar 

  46. Rubinfeld B et al (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272(5264):1023–1026

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto H et al (1999) Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 274(16):10681–10684

    Article  PubMed  CAS  Google Scholar 

  48. Rivera MN et al (2007) An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315(5812):642–645

    Article  PubMed  CAS  Google Scholar 

  49. Major MB et al (2007) Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316(5827):1043–1046

    Article  PubMed  CAS  Google Scholar 

  50. Perotti D et al (2008) Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors. Oncogene 27(33):4625–4632

    Article  PubMed  CAS  Google Scholar 

  51. Ruteshouser EC et al (2008) Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47(6):461–470

    Article  PubMed  CAS  Google Scholar 

  52. Jenkins ZA et al (2009) Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet 41(1):95–100

    Article  PubMed  CAS  Google Scholar 

  53. Grohmann A et al (2007) AMER1 regulates the distribution of the tumor suppressor APC between microtubules and the plasma membrane. J Cell Sci 120(Pt 21):3738–3747

    Article  PubMed  CAS  Google Scholar 

  54. Cavallo RA et al (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395(6702):604–608

    Article  PubMed  CAS  Google Scholar 

  55. Roose J et al (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395(6702):608–612

    Article  PubMed  CAS  Google Scholar 

  56. Chen G et al (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. Genes Dev 13(17):2218–2230

    Article  PubMed  CAS  Google Scholar 

  57. Hecht A et al (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. Embo J 19(8):1839–1850

    Article  PubMed  CAS  Google Scholar 

  58. Levy L et al (2004) Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction. Mol Cell Biol 24(8):3404–3414

    Article  PubMed  CAS  Google Scholar 

  59. Wolf D et al (2002) Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem 277(28):25562–25567

    Article  PubMed  CAS  Google Scholar 

  60. Lammi L et al (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74(5):1043–1050

    Article  PubMed  CAS  Google Scholar 

  61. Mostowska A et al (2006) Axis inhibition protein 2 (AXIN2) polymorphisms may be a risk factor for selective tooth agenesis. J Hum Genet 51(3):262–266

    Article  PubMed  CAS  Google Scholar 

  62. He TC et al (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95(5):2509–2514

    Article  PubMed  CAS  Google Scholar 

  63. Shtutman M et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96(10):5522–5527

    Article  PubMed  CAS  Google Scholar 

  64. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426

    Article  PubMed  CAS  Google Scholar 

  65. Zhang X et al (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 61(16):6050–6054

    PubMed  CAS  Google Scholar 

  66. Brabletz T et al (1999) Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155(4):1033–1038

    PubMed  CAS  Google Scholar 

  67. Conacci-Sorrell ME et al (2002) Nr-CAM is a target gene of the betacatenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16(16):2058–2072

    Article  PubMed  CAS  Google Scholar 

  68. Crawford HC et al (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18(18):2883–2891

    Article  PubMed  CAS  Google Scholar 

  69. Moon RT et al (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5(9):691–701

    Article  PubMed  CAS  Google Scholar 

  70. Chiang JM et al (2002) Nuclear beta-catenin expression is closely related to ulcerative growth of colorectal carcinoma. Br J Cancer 86(7):1124–1129

    Article  PubMed  CAS  Google Scholar 

  71. Clements WM et al (2002) Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62(12):3503–3506

    PubMed  CAS  Google Scholar 

  72. Laurent-Puig P et al (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120(7):1763–1773

    Article  PubMed  CAS  Google Scholar 

  73. Kartheuser A et al (1999) Familial adenomatous polyposis associated with multiple adrenal adenomas in a patient with a rare 3′ APC mutation. J Med Genet 36(1):65–67

    PubMed  CAS  Google Scholar 

  74. Ono C et al (1991) A case of familial adenomatous polyposis complicated by thyroid carcinoma, carcinoma of the ampulla of vater and adrenocortical adenoma. Jpn J Surg 21(2):234–240

    Article  PubMed  CAS  Google Scholar 

  75. Seki M et al (1992) Loss of normal allele of the APC gene in an adrenocortical carcinoma from a patient with familial adenomatous polyposis. Hum Genet 89(3):298–300

    Article  PubMed  CAS  Google Scholar 

  76. Wakatsuki S et al (1998) Adrenocortical tumor in a patient with familial adenomatous polyposis: a case associated with a complete inactivating mutation of the APC gene and unusual histological features. Hum Pathol 29(3):302–306

    Article  PubMed  CAS  Google Scholar 

  77. Kim AC et al (2008) Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135(15):2593–2602

    Article  PubMed  CAS  Google Scholar 

  78. Gummow BM et al (2003) Convergence of Wnt signaling and steroidogenic factor-1 (SF-1) on transcription of the rat inhibin alpha gene. J Biol Chem 278(29):26572–26579

    Article  PubMed  CAS  Google Scholar 

  79. Kim AC et al (2009) In search of adrenocortical stem and progenitor cells. Endocr Rev 30(3):241–263

    Article  PubMed  CAS  Google Scholar 

  80. Val P, Swain A (2010) Gene dosage effects and transcriptional regulation of early mammalian adrenal cortex development. Mol Cell Endocrinol 323(1):105–114

    Article  PubMed  CAS  Google Scholar 

  81. Beuschlein F et al (1994) Clonal composition of human adrenocortical neoplasms. Cancer Res 54(18):4927–4932

    PubMed  CAS  Google Scholar 

  82. Gicquel C et al (1994) Clonal analysis of human adrenocortical carcinomas and secreting adenomas. Clin Endocrinol (Oxf) 40(4):465–477

    Article  CAS  Google Scholar 

  83. Libe R et al (2007) Adrenocortical cancer: pathophysiology and clinical management. Endocr Relat Cancer 14(1):13–28

    Article  PubMed  CAS  Google Scholar 

  84. Reincke M et al (1994) p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78(3):790–794

    Article  PubMed  CAS  Google Scholar 

  85. Sidhu S et al (2002) Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 87(7):3467–3474

    Article  PubMed  CAS  Google Scholar 

  86. Kirschner LS et al (2000) Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 26(1):89–92

    Article  PubMed  CAS  Google Scholar 

  87. Boulle N et al (1998) Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 83(5):1713–1720

    Article  PubMed  CAS  Google Scholar 

  88. Libe R, Bertherat J (2005) Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur J Endocrinol 153(4):477–487

    Article  PubMed  CAS  Google Scholar 

  89. Gaujoux S et al (2008) Wnt/beta-catenin and 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab 93(10):4135–4140

    Article  PubMed  CAS  Google Scholar 

  90. Tadjine M et al (2008) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf) 68(2):264–270

    CAS  Google Scholar 

  91. Tadjine M et al (2008) Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease (PPNAD). Clin Endocrinol (Oxf) 69(3):367–373

    Article  CAS  Google Scholar 

  92. Tissier F et al (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65(17):7622–7627

    PubMed  CAS  Google Scholar 

  93. Bernichtein S et al (2008) Adrenal gland tumorigenesis after gonadectomy in mice is a complex genetic trait driven by epistatic loci. Endocrinology 149(2):651–661

    Article  PubMed  CAS  Google Scholar 

  94. Bielinska M et al (2005) Gonadotropin-induced adrenocortical neoplasia in NU/J nude mice. Endocrinology 146(9):3975–3984

    Article  PubMed  CAS  Google Scholar 

  95. Groussin L et al (2002) Mutations of the PRKAR1A gene in Cushing’s syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab 87(9):4324–4329

    Article  PubMed  CAS  Google Scholar 

  96. Bertherat J et al (2003) Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors:17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Res 63(17):5308–5319

    PubMed  CAS  Google Scholar 

  97. Bossis I, Stratakis CA (2004) Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 145(12):5452–5458

    Article  PubMed  CAS  Google Scholar 

  98. Horvath A et al (2008) Large deletions of the PRKAR1A gene in Carney complex. Clin Cancer Res 14(2):388–395

    Article  PubMed  CAS  Google Scholar 

  99. Horvath A et al (2006) Serial analysis of gene expression in adrenocortical hyperplasia caused by a germline PRKAR1A mutation. J Clin Endocrinol Metab 91(2):584–596

    Article  PubMed  CAS  Google Scholar 

  100. Iliopoulos D et al (2009) MicroRNA signature of primary pigmented nodular adrenocortical disease: clinical correlations and regulation of Wnt signaling. Cancer Res 69(8):3278–3282

    Article  PubMed  CAS  Google Scholar 

  101. Li G, Iyengar R (2002) Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta-catenin-regulated cell proliferation. Proc Natl Acad Sci USA 99(20):13254–13259

    Article  PubMed  CAS  Google Scholar 

  102. Liu J et al (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7(5):927–936

    Article  PubMed  CAS  Google Scholar 

  103. Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7(5):915–926

    Article  PubMed  CAS  Google Scholar 

  104. Hino S et al (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25(20):9063–9072

    Article  PubMed  CAS  Google Scholar 

  105. Taurin S et al (2006) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281(15):9971–9976

    Article  PubMed  CAS  Google Scholar 

  106. Hagen T, Vidal-Puig A (2002) Characterisation of the phosphorylation of beta-catenin at the GSK3 priming site Ser45. Biochem Biophys Res Commun 294(2):324–328

    Article  PubMed  CAS  Google Scholar 

  107. Kikuchi A (2003) Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 94(3):225–229

    Article  PubMed  CAS  Google Scholar 

  108. Wu R et al (2001) Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 61(22):8247–8255

    PubMed  CAS  Google Scholar 

  109. Bourdeau I et al (2004) Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 23(8):1575–1585

    Article  PubMed  CAS  Google Scholar 

  110. Giordano TJ et al (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162(2):521–531

    PubMed  CAS  Google Scholar 

  111. Doghman M et al (2008) The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. J Clin Endocrinol Metab 93(8):3222–3225

    Article  PubMed  CAS  Google Scholar 

  112. Bernard MH et al (2003) A case report in favor of a multistep adrenocortical tumorigenesis. J Clin Endocrinol Metab 88(3):998–1001

    Article  PubMed  CAS  Google Scholar 

  113. Gicquel C et al (2001) Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 61(18):6762–6767

    PubMed  CAS  Google Scholar 

  114. Morin PJ et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307):1787–1790

    Article  PubMed  CAS  Google Scholar 

  115. Smith TG et al (2000) Adrenal masses are associated with familial adenomatous polyposis. Dis Colon Rectum 43(12):1739–1742

    Article  PubMed  CAS  Google Scholar 

  116. Marchesa P et al (1997) Adrenal masses in patients with familial adenomatous polyposis. Dis Colon Rectum 40(9):1023–1028

    Article  PubMed  CAS  Google Scholar 

  117. Traill Z et al (1995) Adrenal carcinoma in a patient with Gardner’s syndrome: imaging findings. AJR Am J Roentgenol 165(6):1460–1461

    PubMed  CAS  Google Scholar 

  118. Lepourcelet M et al (2004) Small-molecule antagonists of the oncogenic Tcf/betacatenin protein complex. Cancer Cell 5(1):91–102

    Article  PubMed  CAS  Google Scholar 

  119. Sukhdeo K et al (2007) Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 104(18):7516–7521

    Article  PubMed  Google Scholar 

  120. Doghman M et al (2007) Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol 21(12):2968–2987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Bertherat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gaujoux, S., Tissier, F., Bertherat, J. (2009). WNT/β-Catenin Signaling in Adrenocortical Carcinoma. In: Hammer, G., Else, T. (eds) Adrenocortical Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77236-3_16

Download citation

Publish with us

Policies and ethics