Skip to main content

Mutagenesis – the Key to Genetic Analysis

  • Chapter
Handbook of Maize

Mutagenesis is a major key to understanding gene function. Most chapters in this book take advantage of mutant alleles to advance the knowledge of maize traits. The chemical mutagen, EMS, has been particularly important because it has a very high efficiency and can be used in any genetic background. EMS also generates half-plant chimeras, which have interesting consequences for lethal dominant mutations. Although dominant mutants are often considered gain-of-function abnormalities, from analysis of thousands of mutants, it appears that most dominants mimic a set of recessive mutants. Examples in which the genes have been cloned demonstrate that a gene defined by a dominant mutation often functions in the same pathway as the gene defined by a recessive mutation with similar phenotype. We present an historical perspective of EMS mutagenesis and discuss frequencies of different types of mutations. Two types of dominant mutants that appear frequently and have recessive counterparts are described in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, D.L., Mellor, E.A., and Langdale, J.A. (2005). CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot. Plant Physiol 138, 1396–1408.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, P., Lubkowitz, M., Tyers, R., Nemoto, K., Meeley, R.B., Goff, S.A., and Freeling, M. (2004). Regulation and a conserved intron sequence of liguleless3/4 knox class-I homeobox genes in grasses. Planta 219, 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Becraft, P.W., Li, K., Dey, N., and Asuncion-Crabb, Y. (2002). The maize dek1 gene functions in embryonic pattern formation and cell fate specification. Development 129, 5217–5225.

    PubMed  CAS  Google Scholar 

  • Bommert, P.B., Lunde, C., Nardmann, J., Vollbrecht, E., Running, M.P., Jackson, D., Hake, S., and Werr, W. (2005). Thick tassel dwarf1 encodes a putative maize orthologue of the Arabidopsis CLAVATA1 leucine-rich receptor-like kinase. Development 132, 1235–1245.

    Article  PubMed  CAS  Google Scholar 

  • Bryan, A.A., and Sass, J.E. (1941). Heritable characters in maize. J. Hered. 32, 343–346.

    Google Scholar 

  • Candela, H., Johnston, R., Gerhold, A., Foster, T., and Hake, S. (2008). The milkweed pod1 gene encodes a KANADI protein that is required for abaxial-adaxial patterhing in maize leaves. Plant cell 20, 2073–2087.

    Article  PubMed  CAS  Google Scholar 

  • Chuck, G., Meeley, R., and Hake, S. (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes and Development 12, 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  • Chuck, G., Cigan, M., Saeteurn, K., and Hake, S. (2007a). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet. 39, 544–549.

    Article  CAS  Google Scholar 

  • Chuck, G., Meeley, R., Irish, E., Sakai, H., and Hake, S. (2007b). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet. 12, 1517–1521.

    Article  Google Scholar 

  • Clark, J.K., and Sheridan, W.F. (1988). Characterization of the two maize embryo-lethal defective kernal mutants rgh*-1210 and fl*-1253B: Effects on embryo and gametophyte development. Genetics 120, 279–290.

    PubMed  Google Scholar 

  • Clark, J.K., and Sheridan, W.F. (1991). Isolation and characterization of 51 embryo-specific mutations of maize. Plant Cell 3, 935–951.

    Article  PubMed  Google Scholar 

  • Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397–418.

    PubMed  CAS  Google Scholar 

  • Cone, K.C., Frisch, E.B., and Phillips, T.E. (1989). dek1 interferes with aleurone differentiation. Maize Genetics Cooperation Newsletter 63, 67–68.

    Google Scholar 

  • Dangl, J.L., Dietrich, R.A., and Richberg, M.H. (1996). Death don’t have no mercy: Cell death programs in plant-microbe interactions. Plant Cell 8, 1793–1807.

    Article  PubMed  CAS  Google Scholar 

  • Doebley, J., Stec, A., and Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141, 333–346.

    PubMed  CAS  Google Scholar 

  • Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386, 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Dorweiler, J., Stec, A., Kermicle, J., and Doebley, J. (1993). Teosinte glume architecture1: A genetic locus controlling a key step in maize evolution. Science 262, 233–235.

    Article  PubMed  Google Scholar 

  • Evans, M.M. (2007). The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo Sac and leaf development. Plant Cell 19, 46–62.

    Article  PubMed  CAS  Google Scholar 

  • Foster, T., Yamaguchi, J., Wong, B.C., Veit, B., and Hake, S. (1999). Gnarley is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity. Plant Cell 11, 1239–1252.

    Article  PubMed  CAS  Google Scholar 

  • Freeling, M., and Hake, S. (1985). Developmental genetics of mutants that specify Knotted leaves in maize. Genetics 111, 617–634.

    PubMed  Google Scholar 

  • Friml, J., Yang, S., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk,P.B.F., Ljung, K., Sandberg, G., Hooykaas, P.J.J., Palme, K., and Offringa, R. (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865.

    Article  PubMed  CAS  Google Scholar 

  • Galinat, W.C. (1954a). Corn grass. I. Corn grass as a prototype or a false progenitor of maize. Am. Nat. 88, 101–104.

    Article  Google Scholar 

  • Galinat, W.C. (1954b). Corn grass. II. Effect of the Corn grass gene on the development of the maize inflorescence. Am. J. Bot. 41, 803–806.

    Article  Google Scholar 

  • Gelinas, D., Postlethwait, S.N., and Nelson, O.E. (1969). Characterization of development in maize through the use of mutants. II. The abnormal growth conditioned by the Knotted mutant. Am. J. Bot. 56, 671–678.

    Google Scholar 

  • Gray, J., Close, P.S., Briggs, S.P., and Johal, G.S. (1997). A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89, 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J., Janick-Buckner, D., Buckner, B., Close, P.S., and Johal, G.S. (2002). Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiology 130, 1894–1907.

    Article  PubMed  CAS  Google Scholar 

  • Greene, B., Walko, R., and Hake, S. (1994). Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics 138, 1275–1285.

    PubMed  CAS  Google Scholar 

  • Haas, G., and Orr, A. (1994). Organogenesis of the maize mutant Fascicled ear (Fas). Maize Gen.Coop. Newsl. 68, 18–19.

    Google Scholar 

  • Hake, S., Smith, H.M.S., Holtan, H., Magnani, E., Mele, G., and Ramirez, J. (2004). The role of KNOX genes in plant development. Annu. Rev. Cell Dev. Biol. 20, 125–151.

    Article  PubMed  CAS  Google Scholar 

  • Harberd, N.P., and Freeling, M. (1989). Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121, 827–838.

    PubMed  Google Scholar 

  • Hoisington, D.A., Neuffer, M.G., and Walbot, V. (1982). Disease lesion mimics in maize. I. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev Biol 93, 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G., Richter, T.E., Hulbert, S.H., and Pryor, T. (1996). Disease Lesion Mimicry Caused by Mutations in the Rust Resistance Gene rp1. Plant Cell 8, 1367–1376.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G., Yalpani, N., Briggs, S.P., and Johal, G.S. (1998). A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10, 1095–1105.

    Article  PubMed  CAS  Google Scholar 

  • Inada, D.C., Bashir, A., Lee, C., Thomas, B.C., Ko, C., Goff, S.A., and Freeling, M. (2003). Conserved noncoding sequences in the grasses. Genome Research 13, 2030–2041.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D., Veit, B., and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405–413.

    CAS  Google Scholar 

  • Johal, G.S. (2007). Disease lesion mimic mutants of maize: APSnet Feature Story July 2007,American Phytipathological Society. http://www.apsnet.org/online/feature/mimics/.

  • Johal, G.S., Hulbert, S.H., and Briggs, S.P. (1995). Disease Lesion Mimics of Maize — a Model for Cell-Death in Plants. Bioessays 17, 685–692.

    Article  Google Scholar 

  • Juarez, M.T., Twigg, R.W., and Timmermans, M.C. (2004a). Specification of adaxial cell fate during maize leaf development. Development 131, 4533–4544.

    Article  CAS  Google Scholar 

  • Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C. (2004b). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88.

    Article  CAS  Google Scholar 

  • Kayes, J.M., and Clark, S.E. (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125, 3843–3851.

    PubMed  CAS  Google Scholar 

  • Kerstetter, R., Vollbrecht, E., Lowe, B., Veit, B., Yamaguchi, J., and Hake, S. (1994). Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6, 1877–1887.

    Article  PubMed  CAS  Google Scholar 

  • Lorrain, S., Vailleau, F., Balague, C., and Roby, D. (2003). Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends Plant Sci 8, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.B., Bogdanove, A.J., and Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54, 23–61.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A. 36, 344–355.

    Article  PubMed  CAS  Google Scholar 

  • McSteen, P., and Hake, S. (2001). barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128, 2881–2891.

    PubMed  CAS  Google Scholar 

  • McSteen, P., Malcomber, S., Skirpan, A., Lunde, C., Wu, X., Kellogg, E., and Hake, S. (2007). barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144, 1000–1011.

    Article  PubMed  CAS  Google Scholar 

  • Miles, C.D., and Daniel, D.J. (1974). Chloroplast Reactions of Photosynthetic Mutants in Zea mays. Plant Physiol 53, 589–595.

    Article  PubMed  CAS  Google Scholar 

  • Morris, S.W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C.C., Frederiksen, R.A.,Bhandhufalck, A., Hulbert, S., and Uknes, S. (1998). Induced resistance responses in maize. Mol Plant Microbe Interact 11, 643–658.

    Article  PubMed  CAS  Google Scholar 

  • Muehlbauer, G.J., Fowler, J.E., Girard, L., Tyers, R., Harper, L., and Freeling, M. (1999). Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant Physiology 119, 651–662.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J.M., Lane, B., and Freeling, M. (2002). Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis. Development 129, 4581–4589.

    PubMed  CAS  Google Scholar 

  • Neuffer, M.G. (1966). Stability of the Suppressor Element in Two Mutator Systems at the A1 Locus in Maize. Genetics 53, 541–549.

    PubMed  Google Scholar 

  • Neuffer, M.G. (1995). Chromosome breaking sites for genetic anlaysis in maize. Maydica 40, 99–116.

    Google Scholar 

  • Neuffer, M.G., and Calvert, O.H. (1975). Dominant Disease Lesion Mimics in Maize. Journal of Heredity 66, 265–270.

    Google Scholar 

  • Neuffer, M.G., and Coe, E.H. (1978). Paraffin oil technique for treating mature corn pollen with chemical mutagens. Maydica 23, 21–28.

    CAS  Google Scholar 

  • Neuffer, M.G., and Sheridan, W.F. (1980). Defective Kernel Mutants of Maize. I. Genetic and Lethality Studies. Genetics 95, 929–944.

    Google Scholar 

  • Neuffer, M.G., Coe, E.H., and Wessler, S.R. (1997). Mutants of maize. (Plainview, New York:Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Neuffer, M.G., Hoisington, D.A., Walbot, V., and Pawar, S.E. (1983). The genetic control of dis ease symptoms. (Oxford and IBH Pub. Co, New Delhi, India).

    Google Scholar 

  • Nogueira, F.T., Madi, S., Chitwood, D.H., Juarez, M.T., and C., T.M. (2007). Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev. 21, 750–755.

    Article  PubMed  CAS  Google Scholar 

  • Nuffer, M.G. (1961). Mutation Studies at the A1 Locus in Maize. I. A Mutable Allele Controlled by Dt. Genetics 46, 625–640.

    CAS  Google Scholar 

  • Orr, A.R., Haas, G., and Sundberg, M.D. (1997). Organogenesis of Fascicled ear mutant inflores cences in maize (Poaceae). Am. J. Bot. 84, 723–734.

    Article  Google Scholar 

  • Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J.,Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D., and Harberd, N.P. (1999). Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Penning, B.W., Johal, G.S., and McMullen, M.D. (2004). A major suppressor of cell death, slm1, modifies the expression of the maize (Zea mays L.) lesion mimic mutation les23. Genome 47, 961–969.

    Article  PubMed  CAS  Google Scholar 

  • Phinney, B.O. (1956). Growth response of single-gene dwarf mutants in maize to gibberellic acid.Proc. Natl. Acad. Sci. USA 42, 185–189.

    Article  CAS  Google Scholar 

  • Poethig, R.S. (1988a). Heterochronic mutations affecting shoot development in maize. Genetics 119, 959–973.

    Google Scholar 

  • Poethig, R.S. (1988b). A non-cell-autonomous mutation regulating juvenility in maize. Nature 336, 82–83.

    Article  Google Scholar 

  • Ramirez, J. (2007). thesis.

    Google Scholar 

  • Scanlon, M.J., Henderson, D.C., and Bernstein, B. (2002). SEMAPHORE1 functions during the regulation of ancestrally duplicated knox genes and polar auxin transport in maize. Development 129, 2663–2673.

    PubMed  CAS  Google Scholar 

  • Schneeberger, R.G., Becraft, P.W., Hake, S., and Freeling, M. (1995). Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes and Development 9, 2292–2304.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, W.F., and Clark, J.K. (1987). Maize enbryogeny: a promising experimental system. TIG 3, 3–6.

    Google Scholar 

  • Singleton, W.R. (1951). Inheritance of Corn grass a macromutation in maize, and its possible significance as an ancestral type. Am Nat 305, 81–96.

    Article  Google Scholar 

  • Stadler, L.J., and Uber, F. (1942). Genetic effects of ultra-violet radiation in maize. I V. Comparison of monochromatic radiations. Genetics 27, 84–118.

    PubMed  CAS  Google Scholar 

  • Taguchi-Shiobara, F., Yuan, Z., Hake, S., and Jackson, D. (2001). The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize.Genes Dev. 15, 2755–2766.

    CAS  Google Scholar 

  • Timmermans, M.C., Schultes, N.P., Jankovsky, J.P., and Nelson, T. (1998). Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 125, 2813–2823.

    PubMed  CAS  Google Scholar 

  • Timmermans, M.C., Hudson, A., Becraft, P.W., and Nelson, T. (1999). ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284, 151–153.

    Article  PubMed  CAS  Google Scholar 

  • Tsiantis, M., Schneeberger, R., Golz, J.F., Freeling, M., and Langdale, J.A. (1999). The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284, 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, N., Townsley, B., Chung, K.H., and Sinha, N. (2007). Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci U S A. 104, 15953–15958.

    Article  PubMed  CAS  Google Scholar 

  • Veit, B., Vollbrecht, E., Mathern, J., and Hake, S. (1990). A tandem duplication causes the Kn1-O allele of Knotted, a dominant morphological mutant of maize. Genetics 125, 623–631.

    PubMed  CAS  Google Scholar 

  • Vollbrecht, E., Veit, B., Sinha, N., and Hake, S. (1991). The developmental gene knotted is a member of a maize homeobox gene family. Nature 350, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht, E., Reiser, L., and Hake, S. (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127, 3161–3172.

    PubMed  CAS  Google Scholar 

  • Walbot, V., Hoisington, D.A., and Neuffer, M.G. (1983). Disease lesion mimic mutations. (New York: Plenum Publishing Corp.).

    Google Scholar 

  • Wang, H., Nussbaum-Wagler, T., Li, B., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens,L., and Doebley, J.F. (2005). The origin of the naked grains of maize. Nature 436, 714–719.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K.L., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–151.

    PubMed  CAS  Google Scholar 

  • Wright, A.D., and Neuffer, M.G. (1989). Orange pericarp in maize: filial expression in a maternal tissue. J. Hered. 80, 229–233.

    Google Scholar 

  • Wright, A.D., Moehlenkamp, C.A., Perrot, G.H., Neuffer, M.G., and Cone, K.C. (1992). The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta. Plant Cell 4, 711–719.

    Article  PubMed  CAS  Google Scholar 

  • Wright, A.D., Sampson, M.B., Neuffer, M.G., Michalczuk, L., Slovin, J.P., and Cohen, J.D. (1991). Indole-3-Acetic Acid Biosynthesis in the Mutant Maize orange pericarp, a Tryptophan Auxotroph. Science 254, 998–1000.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thal-iana by miR156 and its target SPL3. Development 133, 3539–3547.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Neuffer , Guri Johal or Sarah Hake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Neuffer, M.G., Johal, G., Chang, M.T., Hake, S. (2009). Mutagenesis – the Key to Genetic Analysis. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_4

Download citation

Publish with us

Policies and ethics