Skip to main content

Erythrocyte Invasion by Plasmodium falciparum: Multiple Ligand-Receptor Interactions and Phenotypic Switching

  • Chapter
Molecular Mechanisms of Parasite Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 47))

Abstract

Infection with the protozoan parasite Plasmodium falciparum causes the most severe form of human malaria with over two million deaths per year. The clinical symptoms of malaria infection result from the rapid exponential expansion of parasites during the asexual erythrocytic phase of the P. falciparum life cycle. Invasion of erythrocytes by merozoites is a tightly controlled process that involves specific receptor-ligand interactions between host and parasite molecules. Virulence of P. falciparum parasites has been associated with increased multiplication rates and an ability to invade a greater range of host erythrocytes.1 Here we focus on our understanding of the molecular mechanisms underlying host cell selection and invasion of the host erythrocyte using parasite adhesive proteins. We will consider the parasite strategy of deploying multiple and variant adhesive ligands for successful invasion. An understanding of the molecular mechanism by which these proteins mediate invasion will facilitate their use in the rational design of vaccine and drug strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chotivanich K, Udomsangpetch R, Simpson JA et al. Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis 2000; 181(3):1206–1209.

    Article  PubMed  CAS  Google Scholar 

  2. Gratzer WB, Dluzewski AR. The red blood cell and malaria parasite invasion. Semin Hematol 1993; 30(3):232–247.

    PubMed  CAS  Google Scholar 

  3. Dvorak JA, Miller LH, Whitehouse WC et al. Invasion of erythrocytes by malaria merozoites. Science 1975; 187:748–750.

    Article  PubMed  CAS  Google Scholar 

  4. Miller LH, Aikawa M, Johnson JG et al. Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J Exp Med 1979; 149:172–184.

    Article  PubMed  CAS  Google Scholar 

  5. Holder AA, Freeman RR, Uni S et al. Isolation of a Plasmodium falciparum rhoptry protein. Mol Biochem Parasitol 1985; 14:293–303.

    Article  PubMed  CAS  Google Scholar 

  6. Howard RF. The lower-molecular-weight protein complex (RI) of the Plasmodium falciparum rhoptries lacks the glycolytic enzyme aldolase. Mol Biochem Parasitol 1990; 42:235–240.

    Article  PubMed  CAS  Google Scholar 

  7. Carruthers VB, Sibley LD. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 1999; 31(2):421–428.

    Article  PubMed  CAS  Google Scholar 

  8. Goel VK, Li X, Chen H et al. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc Natl Acad Sci USA 2003; 100(9):5164–5169.

    Article  PubMed  CAS  Google Scholar 

  9. Camus D, Hadley TJ. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 1985; 230:553–556.

    Article  PubMed  CAS  Google Scholar 

  10. Sim BKL, Chitnis CE, Wasniowska K et al. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 1994; 264:1941–1944.

    Article  PubMed  CAS  Google Scholar 

  11. Adams JH, Hudson DE, Torii M et al. The duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 1990; 63(1):141–153.

    Article  PubMed  CAS  Google Scholar 

  12. Fang X, Kaslow DC, Adams JH et al. Cloning of the Plasmodium vivax Duffy receptor. Mol Biochem Parasitol 1991; 44:125–132.

    Article  PubMed  CAS  Google Scholar 

  13. Peterson DS, Wellems TE. EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem Parasitol 2000; 105(1):105–113.

    Article  PubMed  CAS  Google Scholar 

  14. Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419(6906):498–511.

    Article  PubMed  CAS  Google Scholar 

  15. Mayer DC, Kaneko O, Hudson-Taylor DE et al. Characterization of a Plasmodium falciparum erythrocyte-binding protein paralogous to EBA-175. Proc Natl Acad Sci USA 2001; 98(9):5222–5227.

    Article  PubMed  CAS  Google Scholar 

  16. Adams JH, Blair PL, Kaneko O et al. An expanding ebl family of Plasmodium falciparum. Trends Parasitol 2001; 17(6):297–299.

    Article  PubMed  CAS  Google Scholar 

  17. Singh AP, Ozwara H, Kocken CH et al. Targeted deletion of Plasmodium knowlesi Duffy binding protein confirms its role in junction formation during invasion. Mol Microbiol 2005; 55(6):1925–1934.

    Article  PubMed  CAS  Google Scholar 

  18. Singh SK, Hora R, Belrhali H et al. Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 2006; 439(7077):741–744.

    Article  PubMed  CAS  Google Scholar 

  19. Tolia NH, Enemark EJ, Sim BK et al. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 2005; 122(2):183–193.

    Article  PubMed  CAS  Google Scholar 

  20. Baum J, Richard D, Healer J et al. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 2006; 281(8):5197–5208.

    Article  PubMed  CAS  Google Scholar 

  21. Miller LH, Aikawa M, Johnson JG et al. Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J Exp Med 1979; 149(1):172–184.

    Article  PubMed  CAS  Google Scholar 

  22. Thompson JK, Triglia T, Reed MB et al. A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes. Mol Microbiol 2001; 41(1):47–58.

    Article  PubMed  CAS  Google Scholar 

  23. Narum DL, Fuhrmann SR, Luu T et al. A novel Plasmodium falciparum erythrocyte binding protein-2 (EBP2/BAEBL) involved in erythrocyte receptor binding. Mol Biochem Parasitol 2002; 119(2):159–168.

    Article  PubMed  CAS  Google Scholar 

  24. Maier AG, Duraisingh MT, Reeder JC et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 2003; 9(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  25. Triglia T, Thompson JK, Cowman AF. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 2001; 116(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  26. Galinski MR, Medina CC, Ingravallo P et al. A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 1992; 69:1213–1226.

    Article  PubMed  CAS  Google Scholar 

  27. Ogun SA, Holder AA. A high molecular mass Plasmodium yoelii rhoptry protein binds to erythrocytes. Mol Biochem Parasitol 1996; 76:321–324.

    Article  PubMed  CAS  Google Scholar 

  28. Holder AA, Freeman RR. Immunization against blood-stage rodent malaria using purified parasite antigens. Nature 1981; 294:361–364.

    Article  PubMed  CAS  Google Scholar 

  29. Taylor HM, Triglia T, Thompson J et al. Plasmodium falciparum homologue of the genes for Plasmodium vivax and Plasmodium yoelii adhesive proteins, which is transcribed but not translated. Infect Immun 2001; 69(6):3635–3645.

    Article  PubMed  CAS  Google Scholar 

  30. Rayner JC, Vargas-Serrato E, Huber CS et al. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med 2001; 194(11):1571–1581.

    Article  PubMed  CAS  Google Scholar 

  31. Triglia T, Duraisingh MT, Good RT et al. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol Microbiol 2005; 55(1):162–174.

    Article  PubMed  CAS  Google Scholar 

  32. Triglia T, Thompson J, Caruana SR et al. Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun. 2001; 69(2):1084–1092.

    Article  PubMed  CAS  Google Scholar 

  33. Rayner JC, Galinski MR, Ingravallo P et al. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA 2000; 97(17):9648–9653.

    Article  PubMed  CAS  Google Scholar 

  34. Duraisingh MT, Triglia T, Ralph SA et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 2003; 22(5):1047–1057.

    Article  PubMed  CAS  Google Scholar 

  35. Dolan SA, Proctor JL, Ailing DW et al. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol 1994; 64:55–63.

    Article  PubMed  CAS  Google Scholar 

  36. Dolan SA, Miller LH, Wellems TE. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J Clin Invest 1990; 86(2):618–624.

    Article  PubMed  CAS  Google Scholar 

  37. Mitchell GH, Hadley TJ, McGinniss MH et al. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: Evidence for receptor heterogeneity and two receptors. Blood 1986; 67(5):1519–1521.

    PubMed  CAS  Google Scholar 

  38. Okoyeh JN, Pillai CR, Chitnis CE. Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A. Infect Immun 1999; 67(11):5784–5791.

    PubMed  CAS  Google Scholar 

  39. Baum J, Pinder M, Conway DJ. Erythrocyte invasion phenotypes of Plasmodium falciparum in The Gambia. Infect Immun 2003; 71(4):1856–1863.

    Article  PubMed  CAS  Google Scholar 

  40. Lobo CA, de Frazao K, Rodriguez M et al. Invasion profiles of Brazilian field isolates of Plasmodium falciparum: Phenotypic and genotypic analyses. Infect Immun 2004; 72(10):5886–5891.

    Article  PubMed  CAS  Google Scholar 

  41. Mayer DC, Jiang L, Achur RN et al. The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL. Proc Natl Acad Sci USA 2006; 103(7):2358–2362.

    Article  PubMed  CAS  Google Scholar 

  42. Mayer DC, Mu JB, Kaneko O et al. Polymorphism in the Plasmodium falciparum erythrocyte-binding ligand JESEBL/EBA-181 alters its receptor specificity. Proc Natl Acad Sci USA 2004; 101(8):2518–2523.

    Article  PubMed  CAS  Google Scholar 

  43. Narum DL, Haynes JD, Fuhrmann S et al. Antibodies against the Plasmodium falciparum receptor binding domain of EBA-175 block invasion pathways that do not involve sialic acids. Infect Immun 2000; 68(4):1964–1966.

    Article  PubMed  CAS  Google Scholar 

  44. Pandey KC, Singh S, Pattnaik P et al. Bacterially expressed and refolded receptor binding domain of Plasmodium falciparum EBA-175 elicits invasion inhibitory antibodies. Mol Biochem Parasitol 2002; 123(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  45. Reed MB, Caruana SR, Batchelor AH et al. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc Natl Acad Sci USA 2000; 97(13):7509–7514.

    Article  PubMed  CAS  Google Scholar 

  46. Duraisingh MT, Maier AG, Triglia T et al. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and-independent pathways. Proc Natl Acad Sci USA 2003; 100(8):4796–4801.

    Article  PubMed  CAS  Google Scholar 

  47. Stubbs J, Simpson KM, Triglia T et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005; 309(5739):1384–1387.

    Article  PubMed  CAS  Google Scholar 

  48. Gaur D, Furuya T, Mu J et al. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway. Mol Biochem Parasitol 2006; 145(2):205–215.

    Article  PubMed  CAS  Google Scholar 

  49. Preiser PR, Jarra W, Capiod T et al. A rhoptry-protein-associated mechanism of clonal phenotypic variation in rodent malaria. Nature 1999; 398(6728):618–622.

    Article  PubMed  CAS  Google Scholar 

  50. Baum J, Maier AG, Good RT et al. Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions. PLoS Pathog 2005; 1(4):e37.

    Article  PubMed  Google Scholar 

  51. Kimura E, Mattei D, Mana di Santi S et al. Genetic diversity in the major merozoite surface antigen of Plasmodium falciparum: High prevalence of a third polymorphic form detected in strains derived from malaria patients. Gene 1990; 91(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  52. Newbold CI. Antigenic variation in Plasmodium falciparum: Mechanisms and consequences. Curr Opin Microbiol 1999; 2:420–425.

    Article  PubMed  CAS  Google Scholar 

  53. Patel SS, Mehlotra RK, Kastens W et al. The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood 2001; 98(12):3489–3491.

    Article  PubMed  CAS  Google Scholar 

  54. Barnwell J and Galinski M. Invasion of vertebrate cells: Erythrocytes. In: Sherman I, ed. Malaria: Parasite biology, pathogenesis, and protection. Washington: ASM Press, 1998:93.

    Google Scholar 

  55. Mourant AE, Kopec AC and Domaniewska-Sobczak K. The distribution of human blood groups and other polymorphisms. 2. London: Oxford university Press, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj T. Duraisingh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Duraisingh, M.T., DeSimone, T., Jennings, C., Refour, P., Wu, C. (2008). Erythrocyte Invasion by Plasmodium falciparum: Multiple Ligand-Receptor Interactions and Phenotypic Switching. In: Burleigh, B.A., Soldati-Favre, D. (eds) Molecular Mechanisms of Parasite Invasion. Subcellular Biochemistry, vol 47. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78267-6_3

Download citation

Publish with us

Policies and ethics