Skip to main content

Trypanosoma cruzi: Parasite and Host Cell Signaling during the Invasion Process

  • Chapter
Molecular Mechanisms of Parasite Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 47))

Abstract

Mammalian cell invasion by Trypanosoma cruzi is a complex process in which various parasite and host cell components interact, triggering the activation of signaling cascades and Ca2+ mobilization in both cells. Using metacyclic trypomastigotes (MT) generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and bloodstream parasites, respectively, the mechanisms of host cell invasion by T. cruzi have been partially elucidated. Distinct sets of molecules are engaged by MT and TCT to enter target cells. MT make use of surface glycoproteins with dual Ca2+ signaling activity, in a manner dependent of T. cruzi isolate. In highly infective MT, the binding of gp82 to its receptor triggers a signaling cascade involving protein tyrosine kinase, phospholipase C and production of inositol 1,4,5-triphosphate, whereas in poorly invasive MT, the mucin-like gp35/50 induces the activation of a signaling route in which adenylate cyclase, generation of cAMP and Ca2+ mobilization from acidocalcisomes are implicated. The host cell signaling pathways activated by MT remain to be determined. Differently from MT, the TCT surface molecules that bind to host cells as a prelude to invasion, such as the glycoproteins of gp85 family, appear to be devoid of signaling properties, but they may induce TCT enzymes, such as oligopeptidase B and cruzipain, to generate Ca2+ signaling factors of parasite or host cell origin. Host cell responses mediated by TGF-β receptor or integrin family member may also be triggered by TCT. A more complete and detailed picture of T. cruzi invasion needs further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Docampo R, Moreno SJ. The role of Ca2+ in the process of cell invasion by intracellular parasites. Parasitol Today 1996; 12:61–65.

    Article  PubMed  CAS  Google Scholar 

  2. Burleigh BA, Andrews NW. Signaling and host cell invasion by Trypanosoma cruzi. Curr Opinion Microbiol 1998; 1:451–465.

    Article  Google Scholar 

  3. Yoshida N. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. Anals Braz Acad Sci 2005; 77:26.

    Google Scholar 

  4. Ruiz RC, Favoreto S, Dorta ML et al. Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signaling activity. Biochem J 1998; 330:505–511.

    PubMed  CAS  Google Scholar 

  5. Ramirez MI, Ruiz RC, Araya JE et al. Involvement of the stage-specific 82-kilodalton adhesion molecule of Trypanosoma cruzi metacyclic trypomastigotes in host cell invasion. Infect Immun 1993; 61:3636–3641.

    PubMed  CAS  Google Scholar 

  6. Ruiz RC, Rigoni VL, Gonzalez J et al. The 35/50 kDa surface antigen of Trypanosoma cruzi metacyclic trypomastigotes, an adhesion molecule involved in host cell invasion. Parasite Immunol 1993; 15:121–123.

    Article  CAS  Google Scholar 

  7. Yoshida N, Mortara RA, Araguth MF et al. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35-and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun 1998; 57:1663–1667.

    Google Scholar 

  8. Cortez M, Neira I, Ferreira D et al. Infection by Trypanosoma cruzi metacyclic forms deficient in gp82 but expressing a related surface molecule gp30. Infect Immun 2003; 71:6184–6191.

    Article  PubMed  CAS  Google Scholar 

  9. Cardoso de Almeida ML, Heise N. Proteins anchored via glycosylphosphatidylinositol and solubilizing phospholipases in Trypanosoma cruzi. Biol Res 1993; 26:285–312.

    CAS  Google Scholar 

  10. Manque PM, Eichinger D, Juliano MA et al. Characterization of the cell adhesion site of Trypanosoma cruzi metacyclic stage surface glycoprotein gp82. Infect Immun 2000; 68:478–484.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshida N, Favoreto Jr S, Ferreira AT et al. Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells. Braz J Med Biol Res 2000; 33:269–278.

    Article  PubMed  CAS  Google Scholar 

  12. Favoreto Jr S, Dorta ML, Yoshida N. Trypanosoma cruzi 175 kDa protein tyrosine phosphorylation is associated with host cell invasion. Exp Parasitol 1998; 89:188–194.

    Article  PubMed  CAS  Google Scholar 

  13. Atayde VD, Neira I, Cortez M et al. Molecular basis of non virulence of Trypanosoma cruzi clone CL-14. Int J Parasitol 2004; 34:851–860.

    Article  PubMed  CAS  Google Scholar 

  14. Teixeira MMG, Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol 1986; 18:271–282.

    Article  PubMed  CAS  Google Scholar 

  15. Schenkman S, Ferguson MAJ, Heise N et al. Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalysed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Mol Biochem Parasitol 1993; 59:293–304.

    Article  PubMed  CAS  Google Scholar 

  16. Schenkman S, Jiang M, Hart GW et al. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 1991; 65:1117–1125.

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida N, Dorta ML, Ferreira AT et al. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Mol Biochem Parasitol 1997; 84:57–67.

    Article  PubMed  CAS  Google Scholar 

  18. Neira I, Ferreira AT, Yoshida N. Activation of distinct signal transduction pathways in Trypanosoma cruzi isolates with differential capacity to invade host cells. Int J Parasitol 2002; 32:405–414.

    Article  PubMed  CAS  Google Scholar 

  19. Docampo R, Scott DA, Vercesi AE et al. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 1995; 310:1005–1012.

    PubMed  CAS  Google Scholar 

  20. Giordano R, Chammas R, Veiga SS et al. An acidic component of the heterogeneous Tc-85 protein family from the surface of Trypanosoma cruzi is a laminin binding glycoprotein. Mol Biochem Parasitol 1994; 65:85–94.

    Article  PubMed  CAS  Google Scholar 

  21. Magdesian MH, Giordano R, Juliano MA et al. Infection by Trypanosoma cruzi: Identification of a parasite ligand and its host-cell receptor. J Biol Chem 2001; 276:19382–19389.

    Article  PubMed  CAS  Google Scholar 

  22. Rodriguez A, Rioult MG, Ora A et al. A trypanosome-soluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 1995; 129:1263–1273.

    Article  PubMed  CAS  Google Scholar 

  23. Burleigh B, Caler EV, Webster P et al. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J Cell Biol 1997; 136:609–620.

    Article  PubMed  CAS  Google Scholar 

  24. Caler EV, Vaena de Avalos S, Haynes PA et al. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J 1998; 17:4975–4986.

    Article  PubMed  CAS  Google Scholar 

  25. Meirelles MN, Juliano L, Carmona E et al. Inhibitors of the major cysteinyl proteinase (gp57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vivo. Mol Biochem Parasitol 1992; 52:175–184.

    Article  PubMed  CAS  Google Scholar 

  26. Scharfstein J, Schmitz V, Morandi V et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B2 receptors. J Exp Med 2000; 192:1289–1299.

    Article  PubMed  CAS  Google Scholar 

  27. Lima APCA, Almeida PC, Tersariol ILS et al. Heparan sulfate modulates kinin release by Trypanosoma cruzi through the activity of cruzipain. J Biol Chem 2002; 277:5875–5881.

    Article  PubMed  CAS  Google Scholar 

  28. Ming M, Ewen ME, Pereira MEA. Trypanosome invasion of mammalian cells requires activation of the TGFβ signaling pathway. Cell 1995; 82:287–296.

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez MA, Munoz-Fernandez MA, Fresno M. Involvement of beta 1 integrins in the binding and entry of Trypanosoma cruzi into human macrophages. Eur J Immunol 1993; 23:552–557.

    Article  PubMed  CAS  Google Scholar 

  30. Elad-Sfadia G, Haklai R, Balan E et al. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 2004; 279:34922–34930.

    Article  PubMed  CAS  Google Scholar 

  31. Kleshchenko YY, Moody TN, Furtak VA et al. Human galectin-3 promotes Trypanosoma cruzi adhesion to human artery smooth muscle cells. Infect Immun 2004; 72:6717–6721.

    Article  PubMed  CAS  Google Scholar 

  32. Vieira MCF, Carvalho TU, Souza W. Effect of protein kinase inhibition on the invasion process of macrophages by Trypanosoma cruzi. Biochem Biophys Res Commun 1994; 203:967–971.

    Article  PubMed  CAS  Google Scholar 

  33. Vieira M, Dutra JM, Carvalho TM et al. Cellular signaling during the macrophage invasion by Trypanosoma cruzi. Histochem Cell Biol 2002; 118:491–500.

    PubMed  CAS  Google Scholar 

  34. Villalta F, Zhang Y, Bibb KE et al. Signal transduction in human macrophages by gp83 ligand of Trypanosoma cruzi: Trypomastigote gp83 ligand up-regulated trypanosome entry through protein kinase C activation. Mol Cell Biol Res Commun 1999; 2:64–70.

    Article  PubMed  CAS  Google Scholar 

  35. Wilkowsky SE, Barbieri MA, Stahl P et al. Trypanosoma cruzi phosphatidylinositol 3-kinase and protein kinase B activation is associated with parasite invasion. Exp Cell Res 2001; 264:211–218.

    Article  PubMed  CAS  Google Scholar 

  36. Zhong L, Lu HG, Moreno SN et al. Tyrosine phosphate hydrolysis of host proteins by Trypanosoma cruzi is linked to cell invasion. FEMS Microbiol Lett 1998; 161:15–20.

    Article  PubMed  CAS  Google Scholar 

  37. Sartori MJ, Mezzano L, Lin S et al. Role of placental alkaline phosphatase in the internalization of trypomastigotes of Trypanosoma cruzi into HEp2 cells. Trop Med Int Health 2003; 8:832–839.

    Article  PubMed  CAS  Google Scholar 

  38. Todorov AG, Einicker-Lamas M, Castro SL et al. Activation of host cell phosphatidylinositol 3-ki-nases by Trypanosoma cruzi infection. J Biol Chem 2000; 275:32182–32186.

    Article  PubMed  CAS  Google Scholar 

  39. Tardieux I, Webster P, Ravesloot J et al. Lysosome recruitment and fusion are early events required for Trypanosoma invasion of mammalian cells. Cell 1992; 71:1117–1130.

    Article  PubMed  CAS  Google Scholar 

  40. Rodriguez A, Martinez I, Chung A et al. cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J Biol Chem 1999; 274:6754–16759.

    Article  Google Scholar 

  41. Caler EV, Chakrabarti S, Fowler KT et al. The exocytosis-regulatory protein sinaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 2001; 193:1097–1104.

    Article  PubMed  CAS  Google Scholar 

  42. Woolsey AM, Sunwoo L, Petersen CA et al. Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. J Cell Sci 2003; 116:3611–3622.

    Article  PubMed  CAS  Google Scholar 

  43. Wilkowsky SE, Barbieri MA, Stahl P et al. Regulation of Trypanosoma cruzi invasion of nonphagocytic cells by the endocytically active GTPases dynamin, Rab5, and Rab7. Biochem Biophys Res Commun 2002; 291:516–521.

    Article  PubMed  CAS  Google Scholar 

  44. Andrade LO, Andrews NW. Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J Exp Med 2004; 200:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  45. Woolsey AM, Burleigh B. Host cell actin polymerization is required for cellular retention of Trypanosoma cruzi and early association with endosomal/lysosomal compartments. Cell Microbiol 2004; 6:829–838.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuko Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Yoshida, N., Cortez, M. (2008). Trypanosoma cruzi: Parasite and Host Cell Signaling during the Invasion Process. In: Burleigh, B.A., Soldati-Favre, D. (eds) Molecular Mechanisms of Parasite Invasion. Subcellular Biochemistry, vol 47. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78267-6_6

Download citation

Publish with us

Policies and ethics