Skip to main content

Neutron Imaging for the Hydrogen Economy

  • Chapter
  • First Online:
Neutron Imaging and Applications

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

The development of fuel cells and hydrogen storage materials will be one of the highest global research and development priorities for the foreseeable future. The particular abilities of neutrons to penetrate materials and to image hydrogen will make neutron imaging a key technique, allowing the in-situ study of real operational devices. This chapter describes the current state of the art in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Certain trade names and company products are mentioned in the text or identified in an illustration in order to adequately specify the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by NIST, nor does it imply that the products are necessarily the best available for this purpose.

    Google Scholar 

  2. J. St-Pierre, J. Electrochem. Soc. 154, B724 (2007).

    Article  CAS  Google Scholar 

  3. P. Bhandari, M. Prina, M. Ahart, R. C. Bowman, and L. A. Wade, Sizing and Dynamic Performance Prediction Tools for 20 K Hydrogen Sorption Cryocoolers in Cryocoolers 11, Edited by R. G. Ross, Jr. Kluwer Academic/Plenum Press, New York, pp. 541–549 (2001).

    Google Scholar 

  4. M. Prina, P. Bhandari, R.C. Bowman, L. A. Wade, D. P. Pearson, and G. Morgante, Performance Prediction of the Planck Sorption Cooler and initial Validation, Advances in Cryogenic Engineering, Vol. 47, edited by S. Breon, et al., Am. Inst. Phys., New York, pp. 1201–1208 (2002).

    Google Scholar 

  5. P. Bhandari, M. Prina, R.C. Bowman-Jr, C. Paine, D. Pearson, A. Nash, Sorption Coolers using a Continuous Cycle to Produce 20 K for the Planck Flight Mission, Cryogenics 44, 395–401 (2004).

    Article  CAS  Google Scholar 

  6. D. Pearson, R. Bowman, M. Prina, P. Wilson, The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K, J. Alloys Compounds 446–447, 718–722 (2007).

    Article  Google Scholar 

  7. J. P. Owejan., T. A. Trabold, D. L. Jacobson, M. Arif, and S. G. Kandlikar, Int. J. Hydrogen Energy 32, 4489 (2007).

    Article  CAS  Google Scholar 

  8. R. J. Bellows, M. Y. Lin, M. Arif, A. K. Thompson, and D. Jacobson, J. Electrochem. Soc. 146, 1099 (1999).

    Article  CAS  Google Scholar 

  9. M. Mathias, J. Roth, J. Fleming, and W. Lehnert, ‘Diffusion Media for PEM Fuel Cells,’ in Handbook of Fuel Cells – Fundamentals, Technology and Applications. Fuel Cell Technology and Applications, Vol. 3, W. Vielstich et al.(Eds.), John Wiley & Sons, Chapter 46 (2003).

    Google Scholar 

  10. R. Mukundan, J. R. Davey, T. Rockward, J. S. Spendelow, B. S. Pivovar, D. S. Hussey, D. L. Jacobson, M. Arif, and R. L. Borup, 'Imaging of Water Profiles in PEM Fuel Cells Using Neutron Radiography: Effect of Operating Conditions and GDL Composition', ECS Trans. 11(1), 411 (2007).

    Google Scholar 

  11. K. Yoshizawa, K. Ikezoe, Y. Tasaki, D. Kramer, E. H. Lehmann, and G. G. Scherer, ECS Trans. 3, 397 (2006).

    Article  CAS  Google Scholar 

  12. M. A. Hickner, N. P. Siegel, K. S. Chen, D. N. McBrayer, D. S. Hussey, D. L. Jacobson, and M. Arif, J. Electrochem. Soc. 153, A902 (2006).

    Article  CAS  Google Scholar 

  13. M. A. Hickner, N. P. Siegel, K. S. Chen, D. N. McBrayer, D. S. Hussey, D. L. Jacobson, and M. Arif, J. Electrochem. Soc. 155(4), B427–B434 (2008).

    Google Scholar 

  14. S. Kim, A.K. Heller, M.C. Hatzell, M.M. Mench, D.S. Hussey, D.L. Jacobson, High Resolution Neutron Imaging of temperature-driven flow in polymer electrolyte fuel cells, American Nuclear Society National Meeting, Anaheim, CA (2008).

    Google Scholar 

  15. D.S. Hussey, D.L. Jacobson, M. Arif, K.J. Coakley, and D.F. Vecchia, In situ fuel cell water metrology at the NIST neutron imaging facility, Proceedings of the ASME Fuel Cell Conference, New York, June 18–20, 2007.

    Google Scholar 

  16. O.H.W. Siegmund, J.V. Vallerga, A. Martin, B. Feller, M. Arif, D.S. Hussey, and D.L. Jacobson, Nucl. Instrum. Meth. A 579, 188 (2007).

    Article  CAS  Google Scholar 

  17. W.B. Feller, P.L. White, and P.B. White, Gamma Insensitive Highly Borated Microchannel Plates for Neutron Imaging, Proceedings of the 8th World Conference on Neutron Radiography, 583–591 (2008).

    Google Scholar 

  18. F. Pfeiffer, C. Grünzweig, O. Bunk, G. Frei, E. Lehmann, and C. David, Phys. Rev. Lett. 96, 215505 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arif, M., Hussey, D., Jacobson, D. (2009). Neutron Imaging for the Hydrogen Economy. In: Bilheux, H., McGreevy, R., Anderson, I. (eds) Neutron Imaging and Applications. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78693-3_11

Download citation

Publish with us

Policies and ethics