Skip to main content

The Physiology of Peritoneal Solute, Water, and Lymphatic Transport

  • Chapter
Nolph and Gokal's Textbook of Peritoneal Dialysis

Few studies have been published on the magnitude of the surface area of the peritoneum. Wegener mentioned a surface area of 1.72 m2 in one adult woman [1] and Putiloff a value of 2.07 m2 in one adult male [2]. More recent autopsy studies reported lower values [3–5]; the average peritoneal surface area in adults ranged from 1.0 m2 [3] to 1.3 m2 [5]. Using CT scanning in continuous ambulatory peritoneal dialysis (CAPD) patients a value of 0.55 m2 has been found [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wegener G. Chirurgische Bemerkungen über die peritoneale Hole, mit besondere Berucksichtigung der Ovariotomie. Arch Klin Chir 1877; 20: 51–59.

    Google Scholar 

  2. Putiloff PV. Materials for the study of the laws of growth of the human body in relation to the surface area: the trial on Russian subjects of planigraphic anatomy as a mean of exact anthropometry. Presented at the Siberian branch of the Russian Geographic Society, Omsk, 1886.

    Google Scholar 

  3. Esperanca MJ, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg 1966; 1: 162–169.

    Google Scholar 

  4. Rubin JL, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rat. Am J Med Sci 1988; 245: 453–458.

    Google Scholar 

  5. Pawlaczyk K, Kuzlan M, Wieczorowska-Tobis K et al. Species-dependent topography of the peritoneum. Adv Perit Dial 1996; 12: 3–6.

    CAS  PubMed  Google Scholar 

  6. Chagnac A, Herskovitz P, Weinstein T, Elyashiv S, Hirsch J, Hamel I, Gafter U. The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography scans. J Am Soc Nephrol 1999; 10: 342–346.

    CAS  PubMed  Google Scholar 

  7. Bell JL, Leypoldt JK, Frigon RP, Henderson LW. Hydraulically-induced convective solute transport across the rabbit peritoneum. Kidney Int 1990; 38: 19–27.

    CAS  PubMed  Google Scholar 

  8. Rubin J, Jones Q, Planch A, Stanek K. Systems of membranes involved in peritoneal dialysis. J Lab Clin Med 1987; 110: 448–453.

    CAS  PubMed  Google Scholar 

  9. Fox SD, Leypoldt JK, Henderson LW. Visceral peritoneum is not essential for solute transport during peritoneal dialysis. Kidney Int 1991; 40: 612–620.

    CAS  PubMed  Google Scholar 

  10. Alon U, Bar-Maor JA, Bar-Joseph G. Effective peritoneal dialysis in an infant with extensive resection of the small intestine. Am J Nephrol 1988; 8: 65–67.

    CAS  PubMed  Google Scholar 

  11. Flessner MF. Small solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol 1996; 7: 225–232.

    CAS  PubMed  Google Scholar 

  12. Zakaria ER, Carlsson O, Sjunnesson H, Rippe B. Liver is not essential for solute transport during peritoneal dialysis. Kidney Int 1996; 50: 298–303.

    CAS  PubMed  Google Scholar 

  13. Khanna R, Mactier R, Twardowski ZJ, Nolph KD. Peritoneal cavity lymphatics. Perit Dial Bull 1986; 6: 113–121.

    Google Scholar 

  14. Kuzlan M, Pawlaczyk K, Wieczorowska-Tobis K, Korybalska K, Breborowicz A, Oreopoulos DG. Peritoneal sarface area and its permeability in rats. Perit Dial Int 1997; 17: 295–300.

    CAS  PubMed  Google Scholar 

  15. Granger DN, Ulrich M, Perry MA, Kvietys PR. Peritoneal dialysis solutions and feline splanchnic blood flow. Clin Exp Pharmacol Physiol 1984; 11: 473–482.

    CAS  PubMed  Google Scholar 

  16. Rippe B, Stelin G, Haraldsson B. Understanding the kinetics of peritoneal transport. In: Hatano M, ed. Nephrology. Tokyo: Springer, 1991, pp. 1563–1572.

    Google Scholar 

  17. Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315–325.

    CAS  PubMed  Google Scholar 

  18. Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int 1995; 47: 1187–1198.

    CAS  PubMed  Google Scholar 

  19. Douma CE, Imholz ALT, Struijk DG, Krediet RT. Similarities and differences between the effects of amino acids and nitroprusside on peritoneal permeability during CAPD. Blood Purif 1998; 16: 57–65.

    CAS  PubMed  Google Scholar 

  20. Nolph KD, Miller F, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int 1980; 18 (suppl. 10): S111–S116.

    Google Scholar 

  21. Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122–135.

    CAS  PubMed  Google Scholar 

  22. Nagel W, Kuschinsky W. Study of the permeability of the isolated dog mesentery. Eur J Clin Invest 1970; 1: 149–154.

    CAS  PubMed  Google Scholar 

  23. Rasio EA. Metabolic control of permeability in isolated mesentery. Am J Physiol 1974; 226: 962–968.

    CAS  PubMed  Google Scholar 

  24. Frokjaer-Jensen J, Christensen O. Potassium permeability of the mesothelium of frog mesentery. Acta Physiol Scand 1979; 105: 228–238.

    CAS  PubMed  Google Scholar 

  25. Flessner MF, Dedrick RL, Schulz JS. Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 1985; 248: H15–H25.

    CAS  PubMed  Google Scholar 

  26. Flessner MF, Fenstermacher JD, Blasberg RG, Dedrick RL. Peritoneal absorption of macromolecules studied by quantitative autoradiography. Am J Physiol 1985; 248: H26–H32.

    CAS  PubMed  Google Scholar 

  27. Flessner MF. Osmotic barrier of the parental peritoneum. Am J Physiol 1994; 267 (Renal Fluid Electrolyte Physiol 36): F861–F870.

    Google Scholar 

  28. Wiederhielm CA. The interstitial space. In: Fung YC, Perrone N, Andeker M, eds. Biomechanics: Its Foundations and Objectives. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 273–286.

    Google Scholar 

  29. Baron MA. Structure of the interstitial peritoneum in man. Am J Anat 1941; 69: 439–496.

    Google Scholar 

  30. Williams PL, Warwick R, Dyson M, Bannister CH. Gray’s Anatomy, 37th edn. Edinburgh: Churchill Livingstone, 1989, p. 1336.

    Google Scholar 

  31. Di Fiore MSH. Atlas of Human Histology. Philadelphia, PA: Lea and Febiger, 1981.

    Google Scholar 

  32. Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal–plasma transport. Tissue concentration gradients. Am J Physiol 1985; 248: F425–F435.

    CAS  PubMed  Google Scholar 

  33. Fox JR, Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res 1979; 18: 255–276.

    CAS  PubMed  Google Scholar 

  34. Grotte G. Passage of dextran molecules across the blood–lymph barrier. Acta Chir Scand 1956; 211 (suppl.): 1–84.

    CAS  Google Scholar 

  35. Mayerson HS, Wolfram CG, Shirley Jr HH, Wasserman K. Regional differences in capilairy permeability. Am J Physiol 1960; 198: 155–160.

    Google Scholar 

  36. Deen WM, Bridges CR, Brenner BM, Myers BD. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol 1985; 249: F374–F389.

    CAS  PubMed  Google Scholar 

  37. Renkin EM. Relation of capillary morphology to transport of fluid and large molecules: a review. Acta Physiol Scand 1979; 463 (suppl.): 81–91.

    CAS  Google Scholar 

  38. Bundgaard M. Transport pathways in capillaries; in search of pores. Annu Rev Physiol 1980; 42: 325–336.

    CAS  PubMed  Google Scholar 

  39. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 1994; 74: 163–219.

    CAS  PubMed  Google Scholar 

  40. Karnovsky MJ. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 1967; 35: 213–236.

    PubMed  Google Scholar 

  41. Rippe B, Haraldsson B. How are macromolecules transported across the capillary wall? News Physiol Sci 1987; 2: 135–138.

    CAS  Google Scholar 

  42. Simionescu N, Simionescu M, Palade GE. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol 1973; 57: 424–452.

    CAS  PubMed  Google Scholar 

  43. Simionescu N, Simionescu M, Palade GE. Permeability of muscle capillaries to small heme-peptides. J Cell Biol 1975; 64: 586–607.

    CAS  PubMed  Google Scholar 

  44. Haraldsson B, Johansson BR. Changes in transcapillary exchange induced by perfusion fixation with glutaraldehyde, followed by simultaneous measurements of capillary filtration coefficient, diffusion capacity and albumin clearance. Acta Physiol Scand 1985; 124: 99–106.

    CAS  PubMed  Google Scholar 

  45. Rippe B, Kamiya A, Folkow B. Transcapillary passage of albumin; effects of tissue cooling and of increases in filtration and plasma colloid osmotic pressure. Acta Physiol Scand 1979; 105: 171–187.

    CAS  PubMed  Google Scholar 

  46. Rosengren BI, Al Rayyes O, Rippe B. Transendothelial transport of low-dencity lipoprotein and albumin across the rat peritoneum in vivo: effects of transcytosis inhibitors NEM and filipin. J Vasc Res 2002; 39: 230–237.

    CAS  PubMed  Google Scholar 

  47. Frokjaer-Jensen J. Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res 1980; 73: 9–20.

    CAS  PubMed  Google Scholar 

  48. Kohn S, Nagy JA, Dvorak HF, Dvorak AM. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 1992; 67: 596–607.

    CAS  PubMed  Google Scholar 

  49. QuHong, Nagy JA, Senger Dr, Dvorak HF, Dvorak AM. Ultrastructural localization of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) to the abluminal plasma membrane and vesico-vacuolar organelles of tumor microvascular endothelium. J Histochem Cytochem 1995; 43: 381–389.

    Google Scholar 

  50. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–1039.

    CAS  PubMed  Google Scholar 

  51. Fox J, Galey F, Wayland H. Action of histamine on the mesenteric microvasculature. Microvasc Res 1980; 19: 108–126.

    CAS  PubMed  Google Scholar 

  52. Henderson LW. Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 1966; 45: 950–955.

    CAS  PubMed  Google Scholar 

  53. Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 1969; 70: 931–941.

    CAS  PubMed  Google Scholar 

  54. Rubin J, Klein E, Bower JD. Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASAIO J 1982; 5: 9–15.

    Google Scholar 

  55. Chen TW, Khanna R, Moore H, Twardowski ZJ, Nolph KD. Sieving and reflection coefficients for sodium salts and glucose during peritoneal dialysis. J Am Soc Nephrol 1991; 2: 1092–1100.

    CAS  PubMed  Google Scholar 

  56. Leypoldt JK, Blindauer KM. Peritoneal solvent drag reflection coefficients are within the physiological range. Blood Purif 1994; 12: 327–336.

    CAS  PubMed  Google Scholar 

  57. Rippe B, Perry MA, Granger DN. Permselectivity of the peritoneal membrane. Microvasc Res 1985; 29: 89–102.

    CAS  PubMed  Google Scholar 

  58. Krediet RT, Imholz ALT, Struijk DG, Koomen GCM, Arisz L. Ultrafiltration failure in continuous ambulatory peritoneal dialysis. Perit Dial Int 1993; 13 (suppl. 2): S59–S66.

    PubMed  Google Scholar 

  59. Zakaria ER, Rippe B. Osmotic barrier properties of the rat peritoneal membrane. Acta Physiol Scand 1993; 149: 355–364.

    CAS  PubMed  Google Scholar 

  60. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 1994; 46: 333–340.

    CAS  PubMed  Google Scholar 

  61. Leypoldt JK. Interpreting peritoneal osmotic reflection coefficients using a distributed model of peritoneal transport. Adv Perit Dial 1993; 9: 3–7.

    CAS  PubMed  Google Scholar 

  62. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int 1989; 35: 1234–1244.

    CAS  PubMed  Google Scholar 

  63. Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int 1990; 38: 465–472.

    CAS  PubMed  Google Scholar 

  64. Ho-dac-Pannekeet MM, Schouten N, Langedijk MJ et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int 1996; 50: 979–986.

    CAS  PubMed  Google Scholar 

  65. Smit W, Struijk DG, Ho-dac-Pannekeet MM, Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int 2004; 66: 849–854.

    PubMed  Google Scholar 

  66. Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP 28 protein. Science 1992; 256: 385–387.

    CAS  PubMed  Google Scholar 

  67. Dempster JA, van Hoek AN, van Os CH. The quest for water channels. News Physiol Sci 1992; 7: 172–176.

    CAS  Google Scholar 

  68. Nielsen S, Agre P. The aquaporin family of water channels in the kidney. Kidney Int 1995; 48: 1057–1068.

    CAS  PubMed  Google Scholar 

  69. Agre P, Preston GM, Smith BL et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 1993; 265: F463–F476.

    CAS  PubMed  Google Scholar 

  70. Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-chip in peritoneal tissue of uremic and CAPD patients. Perit Dial Int 1996; 16 (suppl. 1): S54–S57.

    PubMed  Google Scholar 

  71. Devuyst O, Nielsen S, Cosyns J-P, Smith BL, Agre P, Squifflit J-P, Pouthier D, Goffin E. Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum. Am J Physiol 1998; 275: H234–H242.

    CAS  PubMed  Google Scholar 

  72. Akiba P, Ota T, Fushimi K et al. Water channel APQP1, 3 and 4 in the human peritoneum and peritoneal dialysate. Adv Perit Dial 1997; 13: 3–5.

    CAS  PubMed  Google Scholar 

  73. Schoenicke G, Diamant R, Donner A, Roehrbom A, Grabensee B, Plum J. Histochemical distribution and expression of aquaporine-1 in the peritoneum of patients undergoing peritoneal dialysis: relation to peritoneal transport. Am J Kidney Dis 2004; 44: 146–154.

    CAS  PubMed  Google Scholar 

  74. Lai KN, Li FK, Lan HY, Tang S, Tsang AW, Chan DT, Leung JC. Expression of aquaporine-1 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. J Am Soc Nephrol 2001; 12: 1036–1045.

    CAS  PubMed  Google Scholar 

  75. Lai KN, Leung JC, Chan LY, Tang S, Li FK, Lui SL, Chan TM. Expression of aquaporine-3 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. Kidney Int 2002; 62: 1431–1439.

    CAS  PubMed  Google Scholar 

  76. Krepper MA. The aquaporin family of molecular water channels. Proc Natl Acad Sci U S A 1994; 91: 6255–6258.

    Google Scholar 

  77. Carlsson O, Nielsen S, Zakaria ER, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271 (Heart Circ Physiol 40): H2254–H2262.

    Google Scholar 

  78. Zweers MM, Douma CE, van der Wardt AB, Krediet RT, Struijk DG. Amphotericin B, HgCl2 and peritoneal transport in rabbits. Clin Nephrol 2001; 56: 60–68.

    Google Scholar 

  79. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS. Reduced osmotic water permeability of the peritoneal barriers in aquaporine-1 knockout mice. Am J Physiol 1999; 276: C76–C81.

    CAS  PubMed  Google Scholar 

  80. Ni J, Verbaratz J-M, Rippe A, BoisdéI, Moulin P, Rippe B, Verkman AS, Devuyst O. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 2006; 69: 1518–1525.

    Google Scholar 

  81. Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 1987; 17: 43–52.

    CAS  PubMed  Google Scholar 

  82. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two- and with three-litre exchanges. Nephrol Dial Transplant 1988; 2: 198–204.

    Google Scholar 

  83. Lasrich M, Maher JM, Hirszel P, Maher JF. Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO J 1979; 2: 107–113.

    Google Scholar 

  84. Nolph KD, Ghods A, Brown P et al. Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. Trans Am Soc Artif Intern Organs 1977; 23: 210–218.

    CAS  PubMed  Google Scholar 

  85. Pietrzak I, Hirszel P, Shostak A, Welch PG, Lee RE, Maher JF. Splanchnic volume, not flow rate, determines peritoneal permeability. Trans Am Soc Artif Intern Organs 1989; 35: 583–587.

    CAS  Google Scholar 

  86. Leypoldt JK, Frigon RP, De Vore KW, Henderson LW. A rapid renal clearance methodology for dextran. Kidney Int 1987; 31: 855–860.

    CAS  PubMed  Google Scholar 

  87. Granath KA, Kvist BE. Molecular weight distribution analysis by gel chromatography on Sephadex. J Chromatogr 1967; 28: 69–81.

    CAS  PubMed  Google Scholar 

  88. Krediet RT, Struijk DG, Zemel D, Koomen GCM, Arisz L. The transport of macromolecules across the human peritoneum during CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Ed., 1991, pp. 61–69.

    Google Scholar 

  89. Zemel D, Krediet RT, Koomen GCM, Struijk DG, Arisz L. Day-to-day variability of protein transport used as a method for analyzing peritoneal permeability in CAPD. Perit Dial Int 1991; 11: 217–223.

    CAS  PubMed  Google Scholar 

  90. Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L. Individual characterization of the peritoneal restriction barrier to the transport of serum proteins. In: Ota K, Maher JF, Winchester JF et al., eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 49–55.

    Google Scholar 

  91. Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L. Individual characterization of the peritoneal restriction barrier to macromolecules. Adv Perit Dial 1991; 7: 15–20.

    CAS  PubMed  Google Scholar 

  92. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. The effect of dialysate osmolarity on the transport of low molecular weight solutes and proteins during CAPD. Kidney Int 1993; 43: 1339–1346.

    CAS  PubMed  Google Scholar 

  93. Ho-dac-Pannekeet MM, Koopmans JG, Struijk DG, Krediet RT. Restriction coefficients of low molecular weight solutes and macromolecules during peritoneal dialysis. Adv Perit Dial 1997; 13: 17–22.

    CAS  PubMed  Google Scholar 

  94. Van den Born J, Van den Heuvel LPWJ, Bakker MAH, Veerkamp JH, Assmann KJ, Berden JHM. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 1992; 41: 115–123.

    PubMed  Google Scholar 

  95. Gotloib L, Bar-Sella P, Jaichenko J, Shustack A. Ruthenium-red-stained polyanionic fixed charges in peritoneal microvessels. Nephron 1987; 47: 22–28.

    CAS  PubMed  Google Scholar 

  96. Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Protamine sulfate induces enhanced peritoneal permeability to proteins. Nephron 1991; 57: 45–51.

    CAS  PubMed  Google Scholar 

  97. Alavi N, Lianos E, Andres G, Bentzel CJ. Effect of protamine on the permeability and structure of rat peritoneum. Kidney Int 1982; 21: 44–53.

    CAS  PubMed  Google Scholar 

  98. Krediet RT, Koomen GCM, Koopman MG et al. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int 1989; 35: 1064–1072.

    CAS  PubMed  Google Scholar 

  99. Leypoldt JK, Henderson LW. Molecular charge influences transperitoneal macromolecule transport. Kidney Int 1993; 43: 837–844.

    CAS  PubMed  Google Scholar 

  100. Krediet RT, Struijk DG, Koomen GCM et al. Peritoneal transport of macromolecules in patients on CAPD. Contrib Nephrol 1991; 89: 161–174.

    CAS  PubMed  Google Scholar 

  101. Buis B, Koomen GCM, Imholz ALT et al. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD. Nephrol Dial Transplant 1996; 11: 1113–1120.

    CAS  PubMed  Google Scholar 

  102. Gotloib L, Shustuk A, Jaichenko J. Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron 1989; 51: 77–83.

    CAS  PubMed  Google Scholar 

  103. Vernier RL, Steffels MW, Sisson-Ros S, Mauen SM. Heparan sulfate proteoglycan in the glomerular basement membrane in type 1 diabetes mellitus. Kidney Int 1992; 41: 1070–1080.

    CAS  PubMed  Google Scholar 

  104. Tamsma JT, Van den Born J, Bruijn JA et al. Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia 1994; 37: 1127–1132.

    CAS  PubMed  Google Scholar 

  105. Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JAE, Ince C et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 2006; 55: 1127–132.

    CAS  PubMed  Google Scholar 

  106. Bradley SE. Variations in hepatic flow in man during health and disease. N Engl J Med 1949; 240: 456–461

    CAS  PubMed  Google Scholar 

  107. Aune S. Transperitoneal exchange. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol 1970; 5: 99–104.

    CAS  PubMed  Google Scholar 

  108. Grzegorzewska AE, Moore HL, Nolph KD, Chen TW. Ultrafiltration and effective peritoneal blood flow during peritoneal dialysis in the rat. Kidney Int 1991; 39: 608–617.

    CAS  PubMed  Google Scholar 

  109. Erbe RW, Greene Jr JA, Weller JM. Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 1967; 22: 131–135.

    CAS  PubMed  Google Scholar 

  110. Greene Jr JA, Lapco L, Weller JM. Effect of drug therapy of hemorrhagic hypotension on kinetics of peritoneal dialysis in the dog. Nephron 1970; 7: 178–183.

    CAS  PubMed  Google Scholar 

  111. Rosengren B-I, Rippe B. Blood flow limitation in vivo of small solute transfer during peritoneal dialysis in rats. J Am Soc Nephrol 2003; 14: 1599–1604.

    PubMed  Google Scholar 

  112. Felt J, Richard C, McCaffrey C, Levy M. Peritoneal clearance of creatinine and inulin during dialysis in dogs: effect of splanchnic vasodilators. Kidney Int 1979; 16: 459–469.

    CAS  PubMed  Google Scholar 

  113. Kim M, Lofthouse J, Flessner MF. A method to test blood flow limitation of peritoneal blood solute transport. J Am Soc Nephrol 1997; 8: 471–474.

    CAS  PubMed  Google Scholar 

  114. Kim M, Lofthouse J, Flessner MF. Blood flow limitations of solute transport across the visceral peritoneum. J Am Soc Nephrol 1997; 8: 1946–1950.

    CAS  PubMed  Google Scholar 

  115. Demissachew H, Lothouse J, Flessner MF. Tissue sources and blood flow limitations of osmotic water transport across the peritoneum. J Am Soc Nephrol 1999; 10: 347–353.

    CAS  PubMed  Google Scholar 

  116. Maher JF. Transport kinetics in peritoneal dialysis. Perit Dial Bull 1983 (suppl.): S4–S6.

    Google Scholar 

  117. Nolph KD, Popovich RP, Ghods AJ, Twardowski ZJ. Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 1978; 13: 117–123.

    CAS  PubMed  Google Scholar 

  118. Grzegorzewska AE, Antoniewicz K. An indirect estimation of effective peritoneal capillary blood flow in peritoneally dialyzed uremic patients. Perit Dial Int 1993; 13 (suppl. 2): S39–S40.

    PubMed  Google Scholar 

  119. Douma CE, De Waart DR, Struijk DG, Krediet RT. Effect of aminoacid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol 1996; 5: 295–302.

    Google Scholar 

  120. Douma CE, De Waart DR, Struijk DG, Krediet RT. The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD. Kidney Int 1997; 51: 1885–1892.

    CAS  PubMed  Google Scholar 

  121. Douma CE, De Waart DR, Struijk DG, Krediet RT. Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 1998; 132: 329–340.

    CAS  PubMed  Google Scholar 

  122. Ronco C, Brendolan A, Braglantini L, et al. Studies on ultrafiltration in peritoneal dialysis: influence of plasma proteins and capillary blood flow. Perit Dial Bull 1986; 6: 93–97.

    Google Scholar 

  123. Ronco G, Feriani M, Chiaramonte S et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dial Int 1990; 10: 119–126.

    CAS  PubMed  Google Scholar 

  124. Ronco C, Brendolan A, Crepaldi C et al. Ultrafiltration and clearance studies in human isolated peritoneal vascular loops. Blood Purif 1994; 12: 233–242.

    CAS  PubMed  Google Scholar 

  125. Ronco C, Feriani M, Chiaramonte S, Brendolan A, Milan M, La Graeca G. Peritoneal blood flow: does it matter? Perit Dial Int 1996; 16 (suppl. 1): S70–S75.

    PubMed  Google Scholar 

  126. Ronco C. The ‘nearest capillary' hypothesis: a novel approach to peritoneal transport physiology. Perit Dial Int 1996; 16: 121–125.

    CAS  PubMed  Google Scholar 

  127. Malach M. Peritoneal dialysis for intractable heart failure in acute myocardial infarction. Am J Cardiol 1972; 29: 61–63.

    CAS  PubMed  Google Scholar 

  128. Grzegorzewska AE, Antoniewicz K. Peritoneal blood flow and peritoneal transfer parameters during dialysis with administration of drugs. Adv Perit Dial 1995; 11: 28–32.

    CAS  PubMed  Google Scholar 

  129. Raja RM, Krasnoff O, Moros JG et al. Repeated peritoneal dialysis in the treatment of heart failure. J Am Med Assoc 1970; 213: 1533–1535.

    Google Scholar 

  130. Kim D, Khanna R, Wu G, Fountas P, Druck M, Oreopoulos DG. Successful use of continuous ambulatory peritoneal dialysis in refractory heart failure. Perit Dial Bull 1985; 5: 127–130.

    Google Scholar 

  131. Rubin J, Ball R. CAPD as treatment of severe congestive heart failure in the face of chronic renal failure. Arch Intern Med 1986; 146: 1533–1535.

    CAS  PubMed  Google Scholar 

  132. Stegmayr BG, Banga R, Lundberg L, Wikdahl A-M, Plum-Wirell M. PD treatment for severe congestive heart failure. Perit Dial Int 1996; 16 (suppl. 1): S231–S235.

    PubMed  Google Scholar 

  133. Ryckelynck J-P, Lobbedez T, Valette B et al. Peritoneal ultrafiltration and refractory congestive heart failure. Adv Perit Dial 1997; 13: 93–97.

    CAS  PubMed  Google Scholar 

  134. Marcus RG, Messana J, Swartz R. Peritoneal dialysis in end-stage renal disease patients with pre-existing chronic liver disease and ascites. Am J Med 1992; 93: 35–40.

    CAS  PubMed  Google Scholar 

  135. De Vecchi AF, Colucci P, Salerno F, Scalamogna A, Donticelli C. Outcome of peritoneal dialysis in cirrhotic patients with chronic renal failure. Am J Kidney Dis 2002; 40: 161–168.

    PubMed  Google Scholar 

  136. Selgas R, Munoz IM, Conesa J et al. Endogenous sympathetic activity in CAPD patients: its relationship to peritoneal diffusion capacity. Perit Dial Bull 1986; 6: 205–208.

    Google Scholar 

  137. Ratge D, Augustin R, Wisser H. Plasma catecholamines and α- and β-adrenoceptors in circulating blood cells in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol 1987; 28: 15–21.

    CAS  PubMed  Google Scholar 

  138. Zabetakis PM, Kumar DN, Gleim GW et al. Increased levels of plasma renin, aldosterone, catecholamines and vasopressin in chronic ambulatory peritoneal dialysis (CAPD) patients. Clin Nephrol 1987; 28: 147–151.

    CAS  PubMed  Google Scholar 

  139. Steinhauer HB, Grünter B, Schollmeyer P. Stimulation of peritoneal synthesis of vasoactive prostaglandins during peritonitis in patients on continuous ambulatory peritoneal dialysis. Eur J Clin Invest 1985; 15: 1–15.

    CAS  PubMed  Google Scholar 

  140. Steinhauer HB, Günter B, Schollmeyer P. Enhanced peritoneal generation of vasoactive prostaglandins during peritonitis in patients undergoing CAPD. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 604–609.

    Google Scholar 

  141. Steinhauer HB, Schollmeyer P. Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int 1986; 29: 584–590.

    CAS  PubMed  Google Scholar 

  142. Hain H, Jorres A, Gahl M, Pustelnik A, Müller C, Köttgen E. Peritoneal permeability for proteins in uninfected CAPD patients: a kinetic study. In: Ota K et al., eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 59–66.

    Google Scholar 

  143. Zemel D, Imholz ALT, De Waart DR, Dinkla C, Struijk DG, Krediet RT. Appearance of tumor necrosis factor α and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int 1994; 46: 1422–1430.

    CAS  PubMed  Google Scholar 

  144. Shaldon S, Koch KM, Quellhorst E, Dinarello CA. Hazards of CAPD: interleukin-1 production. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 630–633.

    Google Scholar 

  145. Shaldon S, Dinarello CA, Wyler DJ. Induction of interleukin-1 during CAPD. Contrib Nephrol 1987; 57: 207–212.

    CAS  PubMed  Google Scholar 

  146. Goldman M, Vandenabeele P, Moulart J et al. Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron 1990; 56: 277–280.

    CAS  PubMed  Google Scholar 

  147. Zemel D, ten Berge RJM, Struijk DG, Bloemena E, Koomen GCM, Krediet RT. Interleukin-6 in CAPD patients without peritonitis: relationship to the intrinsic permeability of the peritoneal membrane. Clin Nephrol 1992; 37: 97–103.

    CAS  PubMed  Google Scholar 

  148. Lin CY, Lin CC, Huang TP. Several changes of interleukin-6 and interleukin-8 levels in drain dialysate of uremic patients with continuous ambulatory peritoneal dialysis during peritonitis. Nephron 1993; 63: 404–408.

    CAS  PubMed  Google Scholar 

  149. Zemel D, Koomen GCM, Hart AAM, ten Berge RJM, Struijk DG, Krediet RT. Relationships of THFα, interleukin-6 and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1993; 122: 686–696.

    CAS  PubMed  Google Scholar 

  150. Zemel D, Struijk DG, Dinkla C, Stolk LM, ten Berge RJM, Krediet RT. Effects of intraperitoneal cyclooxygenase inhibition in inflammatory mediators in dialysate and peritoneal membrane characteristics during peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1995; 126: 204–215.

    CAS  PubMed  Google Scholar 

  151. Douma CE, de Waart DR, Zemel D, Struijk DG, Krediet RT. Prostaglandin inhibition by intraperitoneal indomethacin has no effect on peritoneal permeability during stable CAPD. Nephrol Dial Transplant 2001; 16: 803–808.

    CAS  PubMed  Google Scholar 

  152. Zemel D, Krediet RT. Cytokine patterns in the effluent of continuous ambulatory peritoneal dialysis: relationship to peritoneal permeability. Blood Purif 1996; 14: 198–216.

    CAS  PubMed  Google Scholar 

  153. Ho-dac-Pannekeet MM, Krediet RT. Inflammatory changes in vivo during CAPD: what can the effluent tell us? Kidney Int 1996; 50 (suppl. 56): S12–S16.

    Google Scholar 

  154. Douma CE, De Waart DR, Zemel D et al. Nitrate in stable CAPD patients and during peritonitis. Adv Perit Dial 1995; 11: 36–40.

    CAS  PubMed  Google Scholar 

  155. Combet S, van Landschoot M, Moulin P, Piech A, Verbavatz J-M, Gottin E et al. Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J Am Soc Nephrol 1999; 10: 2185–2196.

    CAS  PubMed  Google Scholar 

  156. Miller FN. Effects of peritoneal dialysis on rat microcirculation and peritoneal clearances in man. Dial Transplant 1978; 7: 818–838.

    Google Scholar 

  157. Miller FN. The peritoneal microcirculation. In: Nolph KD, ed. Peritoneal Dialysis, 2nd edn. Boston, MA: Nijhoff, 1985, pp. 51–93.

    Google Scholar 

  158. Miller FN, Nolph KD, Joshua IG, Wiegman DL, Harris PD, Andersen DB. Hyperosmolality, acetate, and lactate: dilatory factors during peritoneal dialysis. Kidney Int 1981; 20: 397–402.

    CAS  PubMed  Google Scholar 

  159. Miller FN, Nolph KD, Joshua IG. The osmolality component of peritoneal dialysis solutions. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980, pp. 12–17.

    Google Scholar 

  160. Mortier S, De Vriese A, van de Voorde J, Schaub TP, Passlick-Destjen J, Lameire NH. Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: the role of acidity, buffer choice, glucose concentration and glucose degradation products. J Am Soc Nephrol 2002; 13: 480–489.

    CAS  PubMed  Google Scholar 

  161. Rubin J, Nolph KD, Arfania D et al. Clinical studies with a nonvasoactive peritoneal dialysis solution. J Lab Clin Med 1979; 93: 910–915.

    CAS  PubMed  Google Scholar 

  162. Miller FN, Nolph KD, Sorkin ML, Gloor HJ. The influence of solute composition on protein loss during peritoneal dialysis. Kidney Int 1983; 23: 35–39.

    CAS  PubMed  Google Scholar 

  163. Struijk DG, Krediet RT, Imholz ALT, Koomen GCM, Arisz L. Fluid kinetics in CAPD patients during dialysis with a bicarbonate based hypoosmolar solution. Blood Purif 1996; 14: 217–226.

    CAS  PubMed  Google Scholar 

  164. Feriani M, Dissegna D, La Graeca G, Passlick-Deetjen J. Short-term clinical study with bicarbonate-containing peritoneal dialysis solution. Perit Dial Int 1993; 13: 296–301.

    CAS  PubMed  Google Scholar 

  165. Passlick-Deetjen J, Kirchgessner J. Bicarbonate: the alternative buffer for peritoneal dialysis. Perit Dial Int 1996; 16 (suppl. 1): S109–S113.

    PubMed  Google Scholar 

  166. Coles GA, Gokal R, Ogg C et al. A randomized controlled trial of a bicarbonate- and a bicarbonate/lactate-containing dialysis solution in CAPD. Perit Dial Int 1997; 17: 48–51.

    CAS  PubMed  Google Scholar 

  167. Plum J, Fuszhöller A, Schoenicke G et al. In vivo and in vitro effects of amino-acid-based and bicarbonate-buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentrations. Nephrol Dial Transplant 1997; 12: 1652–1660.

    CAS  PubMed  Google Scholar 

  168. Coles GA, O’Donoghue DJ, Prichard N et al. A controlled trial of two bicarbonate-containing dialysis fluids for CAPD – Final report. Nephrol Dial Transplant 1998; 13: 3165–3171.

    CAS  PubMed  Google Scholar 

  169. Graf H, Stumvoll HK, Luger A, Prager R. Effects of amino acid infusion on glomerular filtration rate. N Engl J Med 1983; 308: 159–160.

    CAS  PubMed  Google Scholar 

  170. Ter Wee PM, Geerlings W, Rosman JB, Sluiter WJ, Van der Geest E, Donker AJM. Testing renal reserve filtration capacity with an amino acid solution. Nephron 1985; 41: 193–199.

    PubMed  Google Scholar 

  171. Tolins JP, Raij L. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor. Hypertension 1991; 17: 1045–1051.

    CAS  PubMed  Google Scholar 

  172. Krediet RT, Douma CE, Ho-dac-Pannekeet MM et al. Impact of different dialysis solutions on solute and water transport. Perit Dial Int 1997; 17 (suppl. 2): S17–S26.

    PubMed  Google Scholar 

  173. Lindholm B, Werynski A, Bergström J. Peritoneal dialysis with aminoacid solutions: fluid and solute transport kinetics. Artif Organs 1988; 12: 2–10.

    CAS  PubMed  Google Scholar 

  174. Goodship THJ, Lloyd S, McKenzie PW et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 1987; 73: 471–478.

    CAS  PubMed  Google Scholar 

  175. Bruno M, Bagnis C, Marangella M, Rovera L, Cantaluppi A, Linari F. CAPD with an amino acid dialysis solution: a long-term cross-over study. Kidney Int 1989; 35: 1189–1194.

    CAS  PubMed  Google Scholar 

  176. Young GA, Dibble JB, Taylor AE, Kendall S, Brownjohn AM. A longitudinal study of the effects of amino acid-based CAPD fluid on amino acid solution and protein losses. Nephrol Dial Transplant 1989; 4: 900–905.

    CAS  PubMed  Google Scholar 

  177. Steinhauwer HB, Lubrick-Birkner I, Kluthe R, Baumann G, Schollmeyer P. Effect of amino-acid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol 1991; 12: 61–67.

    Google Scholar 

  178. Steinhauer HB, Lubrich-Birkner I, Kluthe R, Hörl WH, Schollmeyer P. Amino acid dialysate stimulator prostaglandin E2 generation in humans. Adv Perit Dial 1988; 4: 21–26.

    Google Scholar 

  179. Waniewski J, Werynski A, Heimbürger O, Park MS, Lindholm B. Effects of alternative osmotic agents on peritoneal transport. Blood Purif 1993; 11: 248–264.

    CAS  PubMed  Google Scholar 

  180. Mistry CD, O’Donoghue DJ, Nelson S, Gokal R, Ballardi FW. Kinetic and clinical studies of β2-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transplant 1990; 5: 513–519.

    CAS  PubMed  Google Scholar 

  181. Imholz ALT, Brown CB, Koomen GCM, Arisz L, Krediet RT. The effects of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial 1993; 9: 25–30.

    CAS  PubMed  Google Scholar 

  182. Krediet RT, Douma CB, Imholz ALT, Koomen GCM. Protein clearance and icodextrin. Perit Dial Int 194; 14 (suppl. 2): S39–S44.

    Google Scholar 

  183. Hirszel P, Lasrich M, Maher JF. Augmentation of peritoneal mass transport by dopamine. J Lab Clin Invest 1979; 94: 747–754.

    CAS  Google Scholar 

  184. Hirszel P, Maher JF, Le Grow W. Increased peritoneal mass transport with glucagon acting at the vascular surface. Trans Am Soc Artif Intern Organs 1978; 24: 136–138.

    CAS  PubMed  Google Scholar 

  185. Maher JF, Hirszel P, Lasrich M. Effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 1979; 16: 130–136.

    CAS  PubMed  Google Scholar 

  186. Hare HG, Valtin H, Gosselin RE. Effect of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 1964; 145: 122–129.

    CAS  PubMed  Google Scholar 

  187. Henderson LW, Kintzel JE. Influence of antidiuretic hormone on peritoneal membrane area and permeability. J Clin Invest 1971; 40: 2437–2443.

    Google Scholar 

  188. Miller FN, Joshua IG, Anderson GL. Quantitation of vasodilator-induced macromolecular leakage by in vivo fluorescent microscopy. Microvasc Res 1982; 24: 56–67.

    CAS  PubMed  Google Scholar 

  189. Brown EA, Kliger AS, Goffinet J, Finkelstein FO. Effect of hypertonic dialysate and vasodilators on peritoneal dialysis clearances in the rat. Kidney Int 1978; 13: 271–277.

    CAS  PubMed  Google Scholar 

  190. Shostak A, Chakrabarti E, Hirszel P, Maher JF. Effects of histamine and its receptor antagonists on peritoneal permeability. Kidney Int 1988; 34: 786–790.

    CAS  PubMed  Google Scholar 

  191. Maher JF, Hirszel P, Lasrich M. Modulation of peritoneal transport rates by prostaglandins. Adv Prostaglandin Thromboxane Res 1980; 7: 695–700.

    CAS  PubMed  Google Scholar 

  192. Hirszel P, Lasrich M, Maher JF. Arachidonic acid increases peritoneal clearances. Trans Am Soc Artif Intern Organs 1981; 27: 61–63.

    CAS  PubMed  Google Scholar 

  193. Maher JF, Hirszel P, Lasrich M. Prostaglandin effects on peritoneal transport. In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 64–69.

    Google Scholar 

  194. Nolph KD, Ghods AJ, Van Stone J, Brown PA. The effects of intraperitoneal vasodilators on peritoneal clearances. ASAIO Trans 1976; 22: 586–594.

    CAS  Google Scholar 

  195. Nolph KD, Ghods AJ, Brown PA et al. Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. ASAIO Trans 1977; 23: 210–218.

    CAS  Google Scholar 

  196. Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ. Effects of intraperitoneal nitroprusside on peritoneal clearances in man with variation in dose, frequency of administration and dwell times. Nephron 1979; 24: 114–120.

    CAS  PubMed  Google Scholar 

  197. Lee HB, Park MS, Chung SH et al. Peritoneal solute clearances in diabetics. Perit Dial Int 1990; 10: 85–88.

    CAS  PubMed  Google Scholar 

  198. Miller FN, Joshua IG, Harris PD, Wiegman DL, Jauchem JR. Peritoneal dialysis solutions and the microcirculation. Contrib Nephrol 1979; 17: 51–58.

    CAS  PubMed  Google Scholar 

  199. Curatola G, Zoccali C, Crucitti S et al. Effect of posture on peritoneal clearance in CAPD patients. Perit Dial Int 1988; 8: 58–59.

    Google Scholar 

  200. Imholz ALT, Koomen GCM, Voorn WJ, Struijk DG, Arisz L, Krediet RT. Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD. Nephrol Dial Transplant 1998; 13: 146–153.

    CAS  PubMed  Google Scholar 

  201. Zanozi S, Winchester JF, Kloberdanz N et al. Upright position and exercise lower peritoneal transport rates. Kidney Int 1983; 23: 165.

    Google Scholar 

  202. Otero A, Esteban J, Canovas L. Does posture modify solute transport in CAPD? Perit Dial Int 1992; 12: 399–400.

    CAS  PubMed  Google Scholar 

  203. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Effect of increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 1993; 44: 1078–1085.

    CAS  PubMed  Google Scholar 

  204. Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal plasma transport: theoretical considerations. Am J Physiol 1984; 246: R597–R607.

    CAS  PubMed  Google Scholar 

  205. Seasmes EL, Moncrief JW, Popovich RP. A distributed model of fluid and mass transfer in peritoneal dialysis. Am J Physiol 1990; 258: 958–972.

    Google Scholar 

  206. Lysaght MJ, Farrell PC. Membrane phenomena and mass transfer kinetics in peritoneal dialysis. J Memb Sci 1984; 44: 5–53.

    Google Scholar 

  207. Popovich RP, Moncrief JW. Kinetic modeling of peritoneal transport. Contrib Nephrol 1974; 17: 59–72.

    Google Scholar 

  208. Pyle WK, Popovich RP, Moncrief JW. Mass transfer in peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 41–46.

    Google Scholar 

  209. Pyle WK. Mass transfer in peritoneal dialysis. Thesis, University of Texas at Austin, University Microfilms International, Ann Arbor, Michigan, 1982.

    Google Scholar 

  210. Randersson DH, Farrell P. Mass transfer properties of the human peritoneum. ASAIO J 1980; 3: 140–146.

    Google Scholar 

  211. Smeby LC, Wideroe T-E, Jorstad S. Individual differences in water transport during continuous peritoneal dialysis. ASAIO J 1981; 4: 17–27.

    Google Scholar 

  212. Waniewski J, Werynski A, Heimburger O, Lindholm B. Simple membrane models for peritoneal dialysis: evaluation of diffusive and convective solute transport. ASAIO J 1992; 38: 788–796.

    CAS  PubMed  Google Scholar 

  213. Henderson LW, Nolph KD. Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 1969; 48: 992–1001.

    CAS  PubMed  Google Scholar 

  214. Keshaviah P, Emerson PF, Vonesh EF, Brandes JC. Relationship between body size, fill volume and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol 1994; 4: 1820–1826.

    CAS  PubMed  Google Scholar 

  215. Lindholm B, Werynski A, Bergström J. Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. ASAIO Trans 1987; 33: 19–27.

    CAS  PubMed  Google Scholar 

  216. Garred LJ, Canaud B, Farrell PC. A simple kinetic model for assessing peritoneal mass transfer in chronic ambulatory peritoneal dialysis. ASAIO J 1983; 6: 131–137.

    Google Scholar 

  217. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Strackee J, Arisz L. Simple assessment of the efficacy of peritoneal transport in continuous ambulatory peritoneal dialysis patients. Blood Purif 1986; 4: 194–203.

    CAS  PubMed  Google Scholar 

  218. Waniewski J, Werynski A, Heimbürger O, Lindholm B. Simple models for description of small solute transport in peritoneal dialysis. Blood Purif 1991; 9: 129–141.

    CAS  PubMed  Google Scholar 

  219. Waniewski J, Heimbürger O, Werynski A, Lindholm B. Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 50–56.

    CAS  PubMed  Google Scholar 

  220. Lindholm B, Werynski A, Bergström J. Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. ASAIO Trans 1987; 10: 19–27.

    Google Scholar 

  221. Heimbürger O, Waniewski J, Werynski A, Traneaus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495–506.

    PubMed  Google Scholar 

  222. La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell’Oro C, Andrulli S, Locatelli F. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int 2005; 68: 840–846.

    PubMed  Google Scholar 

  223. Heimbürger O, Waniewski J, Werynski A, Park MS, Lindholm B. Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant 1994; 9: 47–59.

    PubMed  Google Scholar 

  224. Pannekeet MM, Imholz ALT, Struijk DG et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995; 48: 866–875.

    CAS  PubMed  Google Scholar 

  225. Davies SJ, Brown B, Bryan J, Russel GI. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant 1993; 8: 64–70.

    CAS  PubMed  Google Scholar 

  226. Nolph KD. Clinical implications of membrane transport characteristics on the adequacy of fluid and solute removal. Perit Dial Int 1994; 14 (suppl. 3): S78–S81.

    PubMed  Google Scholar 

  227. Twardowski ZJ, Nolph KD, Khanna R et al. Peritoneal equilibration test. Perit Dial Bull 1987; 7: 138–147.

    Google Scholar 

  228. Smit W, Langedijk M, Schouten N, Van den Berg N, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose solutions for the assessment of peritoneal membrane function. Perit Dial Int 2000; 20: 734–741.

    CAS  PubMed  Google Scholar 

  229. Smit W, Van Dijk P, Schouten N, Langedijk N, Van den Berg N, Struijk DG, Krediet RT. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int 2003; 23: 440–449.

    CAS  PubMed  Google Scholar 

  230. Nolph KD, Twardowski ZJ, Popovich RP, Rubin J. Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 1979; 93: 246–256.

    CAS  PubMed  Google Scholar 

  231. Heimbürger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992; 41: 1320–1332.

    PubMed  Google Scholar 

  232. Canaud B, Liendo-Liendo C, Claret G, Mion H, Mion C. Etude ‘in situ' de la cinétique de l’ultrafiltration en cours de dialyse péritoneale avec périodes de diffusion prolongé. Néphrologie 1980; 1: 126–132.

    CAS  PubMed  Google Scholar 

  233. Wang T, Waniewski J, Heimbürger O, Werynski A, Lindholm B. A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 1997; 52: 1609–1616.

    CAS  PubMed  Google Scholar 

  234. Raja RM, Cantor RE, Boreyko C, Bushehri H, Kramer MS, Rosenbaum JL. Sodium transport during ultrafiltration peritoneal dialysis. Trans Am Soc Artif Intern Organs 1972; 18: 429–433.

    CAS  PubMed  Google Scholar 

  235. Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 1989; 70: 931–941.

    Google Scholar 

  236. Leypoldt JK, Charney DI, Cheung AK, Naprestek CL, Akin BH, Shockley TR. Ultrafiltration and solute kinetics using low sodium peritoneal dialysate. Kidney Int 1995; 48: 1959–1966.

    CAS  PubMed  Google Scholar 

  237. Stryer L. Biochemistry, 2nd edn. Freeman, San Francisco, CA: Freeman, 1981, p. 205.

    Google Scholar 

  238. Martin L, Serkes KD, Nolph KD. Calcium carbonate as a phosphate binder: is there a need to adjust peritoneal calcium concentrations in patients using CaCO3? Perit Dial Int 1989; 9: 325–328.

    Google Scholar 

  239. Nakayama M, Yokoyama K, Kubo H et al. The effect of ultra-low sodium dialysate in CAPD. A kinetic and clinical analysis. Clin Nephrol 1996; 45: 188–193.

    CAS  PubMed  Google Scholar 

  240. Brown ST, Ahearn J, Nolph KD. Potassium removal with peritoneal dialysis. Kidney Int 1973; 4: 67–69.

    CAS  PubMed  Google Scholar 

  241. Merchant MR, Hutchinson AJ, Butler SJ, Boulton H, Hincliffe R, Gokal R. Calcium, magnesium mass transfer and lactate balance study in CAPD patients with reduced calcium/magnesium and high lactate dialysis fluid. Adv Perit Dial 1992; 8: 365–368.

    CAS  PubMed  Google Scholar 

  242. Richardson RMA, Roscoe JM. Bicarbonate, l-lactate and d-lactate balance in intermittent peritoneal dialysis. Perit Dial Bull 1986; 6: 178–185.

    Google Scholar 

  243. Uribarri J, Buquing J, Oh MS. Acid–base balance in chronic peritoneal dialysis patients. Kidney Int 1995; 47: 269–273.

    CAS  PubMed  Google Scholar 

  244. Feriani M. Adequacy of acid–base correction in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 1994; 14 (suppl. 3): S133–S138.

    PubMed  Google Scholar 

  245. Feriani M, Ronco C, La Graeca G. Acid–base balance with different CAPD solutions. Perit Dial Int 1996; 16 (suppl. 1): S126–S129.

    PubMed  Google Scholar 

  246. Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Peritoneal permeability to proteins in diabetic and non-diabetic continuous ambulatory peritoneal dialysis patients. Nephron 1986; 42: 133–140.

    CAS  PubMed  Google Scholar 

  247. Bonomini V, Zucchelli P, Mioli V. Selective and unselective protein loss in peritoneal dialysis. Proc Eur Dial Transplant Assoc 1967; 4: 146–149.

    Google Scholar 

  248. Taylor AE, Granger DN. Exchange of macromolecules across the microcirculation. In: Renkin EM, Michell CC, eds. Handbook of Physiology. Section 2: The Cardiovascular System. Bethesda, Maryland: American Physiological Society, 1984, pp. 467–520.

    Google Scholar 

  249. Rippe B, Haraldsson B. Fluid and protein fluxes across small and large pores in the microvasculature. Applications of two-pore equations. Acta Physiol Scand 1987; 131: 411–428.

    CAS  PubMed  Google Scholar 

  250. Nolph KD, Miller FN, Pyle WK, Popovich RP, Sorkin MI. An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int 1981; 20: 543–548.

    CAS  PubMed  Google Scholar 

  251. Leypoldt JK, Blindauer KM. Convection does not govern plasma to dialysate transport of protein. Kidney Int 1992; 42: 1412–1418.

    CAS  PubMed  Google Scholar 

  252. Schaeffer Jr RC, Bitrick MS, Holberg III WC, Katz MA. Macromolecular transport across endothelial monolayers. Int J Microcirc Clin Exp 1992; 11: 181–201.

    CAS  PubMed  Google Scholar 

  253. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Pharmacokinetics of intraperitoneally administered 5-fluorocytosine in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1987; 2: 453.

    Google Scholar 

  254. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol 1987; 27: 51–55.

    CAS  PubMed  Google Scholar 

  255. Smit W, de Waart R, Struijk DG, Krediet RT. Peritoneal transport characteristics with glycerol-based dialysate in peritoneal dialysis. Perit Dial Int 2000; 20: 557–565.

    CAS  PubMed  Google Scholar 

  256. Heaton A, Ward MK, Johnston DG, Nicholson DV, Alberti KGMM, Kerr DNS. Short-term studies on the use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis (CAPD). Clin Sci 1984; 67: 121–130.

    CAS  PubMed  Google Scholar 

  257. Williams PF, Marliss EB, Andersson GH et al. Amino acid absorption following intraperitoneal administration in CAPD patients. Perit Dial Bull 1982; 2: 124–130.

    Google Scholar 

  258. Lukas G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 1971; 178: 562–566.

    CAS  PubMed  Google Scholar 

  259. Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH. Bi-directional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transplant Assoc 1973; 10: 247–261.

    CAS  PubMed  Google Scholar 

  260. Bouchet JL, Albin H, Quentin C et al. Pharmacokinetics of intravenous and intraperitoneal fosfomycin in continuous ambulatory peritoneal dialysis. Clin Nephrol 1988; 29: 35–40.

    CAS  PubMed  Google Scholar 

  261. Janicke DM, Morse GD, Apicella MA, Jusko WJ, Walshe JJ. Pharmacokinetic modelling of bidirectional transfer during peritoneal dialysis. Clin Pharmacol Ther 1986; 40: 209–218.

    CAS  PubMed  Google Scholar 

  262. Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Reijden HJ van der, Arisz L. Indirect measurement of lymphatic absorption with inulin in continuous ambulatory peritoneal dialysis (CAPD) patients. Perit Dial Int 1990; 10: 141–145.

    CAS  PubMed  Google Scholar 

  263. Struijk DG, Imholz ALT, Krediet RT, Koomen GCM, Arisz L. The use of the disappearance rate for the measurement of lymphatic absorption during CAPD. Blood Purif 1992; 10: 182–188.

    CAS  PubMed  Google Scholar 

  264. Krediet RT, Struijk DG, Boeschoten EW, Hoek FJ, Arisz L. Measurement of intraperitoneal fluid kinetics in CAPD patients by means of autologous hemoglobin. Neth J Med 1988; 33: 281–290.

    CAS  PubMed  Google Scholar 

  265. Leypoldt JK, Pust AH, Frigon RP, Henderson LW. Dialysate volume measurements required for determining peritoneal solute transport. Kidney Int 1988; 34: 254–261.

    CAS  PubMed  Google Scholar 

  266. Rubin J, Adair C, Johnson B, Bower J. Stereospecific lactate absorption during peritoneal dialysis. Nephron 1982; 31: 224–228.

    CAS  PubMed  Google Scholar 

  267. Nemoto EM, Severinghaus JW. Stereospecific permeability of rat blood–brain barrier to lactic acid. Stroke 1974; 5: 81–84.

    CAS  PubMed  Google Scholar 

  268. Nolph KD, Twardowski ZJ, Khanna R et al. Tidal peritoneal dialysis with racemic or l-lactate solutions. Perit Dial Int 1990; 10: 161–164.

    CAS  PubMed  Google Scholar 

  269. Oh MS, Pheleps KR, Traube M, Barbosa-Saldivar JL, Boxhill C, Carrol HJ. d-lactic acidosis in a man with the short-bowel syndrome. N Engl J Med 1979; 301: 249–252.

    CAS  PubMed  Google Scholar 

  270. Stolberg L, Rolfe R, Gitlin N et al. d-lactate acidosis due to abnormal gut flora. N Engl J Med 1982; 306: 1344–1348.

    CAS  PubMed  Google Scholar 

  271. Fine A. Metabolism of d-lactate in the dog and in man. Perit Dial Int 1989; 9: 99–101.

    CAS  PubMed  Google Scholar 

  272. Dixon SR, McKean WI, Pryor JE, Irvine ROH. Changes in acid–base balance during peritoneal dialysis with fluid containing lactate ions. Clin Sci 1970; 39: 51–60.

    CAS  PubMed  Google Scholar 

  273. Gotch FA, Sargent JA, Keen ML. Hydrogen ion balance in dialysis therapy. Artif Organs 1982; 6: 388–395.

    CAS  PubMed  Google Scholar 

  274. Tattersall TE, Dick S, Doyle S, Greenwood RN, Farrington K. Alkalosis and hypomagnesaemia: unwanted effects of a low calcium CAPD solution. Nephrol Dial Transplant 1995; 10: 258–262.

    CAS  PubMed  Google Scholar 

  275. Feriani M, Passlick-Deetjen J, La Graeca G. Factors affecting bicarbonate transfer with bicarbonate-containing CAPD solution. Perit Dial Int 1995; 15: 336–341.

    CAS  PubMed  Google Scholar 

  276. Rottembourg J, Gahl GM, Pognet JL et al. Severe abdominal complications in patients undergoing continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 1983; 20: 236–242.

    CAS  PubMed  Google Scholar 

  277. Slingeneyer A, Mion C, Mourad G, Canaud B, Faller B, Béraud JJ. Progressive sclerosing peritonitis: a late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 1983; 29: 633–640.

    Google Scholar 

  278. Rottembourg J, Issad B, Langlois P, de Groc F, Legrain M. Sclerosing encapsulating peritonitis during CAPD. Evaluation of potential risk factors. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 643–649.

    Google Scholar 

  279. Pedersen FB, Ryttov N, Deleuran P, Dragsholt C, Kildeberg P. Acetate versus lactate in peritoneal dialysis solutions. Nephron 1985; 39: 55–58.

    CAS  PubMed  Google Scholar 

  280. Gjessing J. The use of dextran as a dialyzing fluid in peritoneal dialysis. Acta Med Scand 1969; 185: 237–239.

    CAS  PubMed  Google Scholar 

  281. Daugirdas JT, Ing TS, Gandhi VC, Hano JE, Chen WT, Yuan L. Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med 1980; 95: 351–361.

    CAS  PubMed  Google Scholar 

  282. Rippe B, Stelin G, Ahlmen J. Lymph flow from the peritoneal cavity in CAPD patients. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 24–30.

    Google Scholar 

  283. Spencer PC, Farrell PC. Solute and water transfer kinetics in CAPD. In: Gokal R, ed. Continuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986, pp. 38–55.

    Google Scholar 

  284. De Paepe M, Belpaire F, Schelstraete K, Lameire N. Comparison of different volume markers in peritoneal dialysis. J Lab Clin Med 1988; 111: 421–429.

    PubMed  Google Scholar 

  285. Lindholm B, Heimbürger O, Waniewski J, Werynski A, Bergström J. Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol Dial Transplant 1989; 4: 805–813.

    CAS  PubMed  Google Scholar 

  286. Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. J Clin Invest 1987; 80: 1311–1316.

    CAS  PubMed  Google Scholar 

  287. Krediet RT, Struijk DG, Koomen GCM, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans 1991; 37: 662–667.

    CAS  PubMed  Google Scholar 

  288. Struijk DG, Koomen GCM, Krediet RT, Arisz L. Indirect measurement of lymphatic absorption in CAPD patients is not influenced by trapping. Kidney Int 1992; 41: 1668–1675.

    CAS  PubMed  Google Scholar 

  289. Brouard R, Tozer TN, Baumelou A, Gambertoglio JG. Transfer of autologous haemoglobin from the peritoneal cavity during peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 57–62.

    CAS  PubMed  Google Scholar 

  290. Struijk DG, Bakker JC, Krediet RT, Koomen GCM, Stekkinger P, Arisz L. Effect of intraperitoneal administration of two different batches of albumin solutions on peritoneal solute transport in CAPD patients. Nephrol Dial Transplant 1991; 6: 198–202.

    CAS  PubMed  Google Scholar 

  291. Hirszel P, Shea-Donohue T, Chakrabarti E, Montcalm E, Maher JF. The role of the capillary wall in restricting diffusion of macromolecules. Nephron 1988; 44: 58–61.

    Google Scholar 

  292. Cheek TR, Twardowski ZJ, Moore HL, Nolph KD. Absorption of inulin and high-molecular weight gelatin isocyanate solutions from peritoneal cavity of rats. In: Avram MM, Giordano C, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, pp. 149–152.

    Google Scholar 

  293. Krediet RT, Struijk DG, Koomen GCM, Hoek FJ, Arisz L. The disappearance of macromolecules from the peritoneal cavity during continuous ambulatory peritoneal dialysis (CAPD) is not dependent on molecular size. Perit Dial Int 1990; 10: 147–152.

    CAS  PubMed  Google Scholar 

  294. Nolph KD, Mactier R, Khanna R, Twardowski ZJ, Moore H, McGary T. The kinetics of ultrafiltration during peritoneal dialysis: the role of lymphatics. Kidney Int 1987; 32: 219–226.

    CAS  PubMed  Google Scholar 

  295. Zakaria ER, Rippe B. Peritoneal fluid and tracer albumin kinetics in the rat. Effects of increases in intraperitoneal hydrostatic pressure. Perit Dial Int 1995; 15: 118–128.

    CAS  PubMed  Google Scholar 

  296. Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Influence of phosphatidylcholine on lymphatic absorption during peritoneal dialysis in the rat. Perit Dial Int 1988; 8: 179–186.

    Google Scholar 

  297. Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 1983; 244: H89–H96.

    CAS  PubMed  Google Scholar 

  298. Parikova A, Smit W, Struijk DG, Zweers MM, Krediet RT. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int 2005; 68: 1849–1856.

    PubMed  Google Scholar 

  299. Rose BD. Clinical Physiology of Acid–Base and Electrolyte Disorders, 2nd edn. New York: McGraw-Hill, 1984, p. 33.

    Google Scholar 

  300. Twardowski ZJ, Khanna R, Nolph KD et al. Intra-abdominal pressures during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 129–135.

    CAS  PubMed  Google Scholar 

  301. Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lampton LM. High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 1983; 23: 64–70.

    CAS  PubMed  Google Scholar 

  302. Krediet RT, Koomen GCM, Struijk DG, Van Olden RW, Imholz ALT, Boeschoten EW. Practical methods for assessing dialysis efficiency during peritoneal dialysis. Kidney Int 1994; 46 (suppl. 48): S7–S13.

    Google Scholar 

  303. Rubin J, Nolph KD, Popovich RP, Moncrieff JW, Prowant B. Drainage volumes during continuous ambulatory peritoneal dialysis. ASAIO J 1979; 2: 54–60.

    Google Scholar 

  304. Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int 2000; 20 (suppl. 4): S22–S42.

    PubMed  Google Scholar 

  305. Alsop RM. History, chemical and pharmaceutical development of icodextrin. Perit Dial Int 1994; 14 (suppl. 2): S5–S12.

    Google Scholar 

  306. Mistry CD, Gokal R. Can ultrafiltration occur with a hypoosmolar solution in peritoneal dialysis?: the role for ‘colloid' osmosis. Clin Sci 1993; 85: 495–500.

    CAS  PubMed  Google Scholar 

  307. Rippe B, Levin L. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int 2000; 57: 2546–2556.

    CAS  PubMed  Google Scholar 

  308. Gokal R, Mistry CD, Peers E, MIDAS Study Group. A United Kingdom multicenter study of icodextrin in continuous ambulatory peritoneal dialysis. Perit Dial Int 1994; 14 (suppl. 2): S22–S27.

    Google Scholar 

  309. Douma CE, Hirallall JK, De Waart DR, Struijk DG, Krediet RT. Icodextrin with nitroprusside increases ultrafiltration and peritoneal transport during long CAPD dwells. Kidney Int 1998; 53: 1014–1021.

    CAS  PubMed  Google Scholar 

  310. Mistry CD, Gokal R, Peers E, MIDAS Study Group. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int 1994; 46: 496–503.

    CAS  PubMed  Google Scholar 

  311. Nagy JA. Lymphatic and nonlymphatic pathways of peritoneal absorption in mice: physiology versus pathology. Blood Purif 1992; 10: 148–162.

    CAS  PubMed  Google Scholar 

  312. Wang T, Chen C, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Hyaluronan decreases peritoneal fluid absorption in peritoneal dialysis. J Am Soc Nephrol 1997; 8: 1915–1920.

    CAS  PubMed  Google Scholar 

  313. Kaysen GA, Schoenfeld PY. Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 1984; 25: 107–114.

    CAS  PubMed  Google Scholar 

  314. Abernathy HJ, Clin W, Hay JB, Rodela H, Oreopoulos D, Johnston MG. Lymphatic removal of dialysate from the peritoneal cavity of anesthetized sheep. Kidney Int 1991; 40: 174–181.

    Google Scholar 

  315. Johnston MG. Studies on lymphatic drainage of the peritoneal cavity in sheep. Blood Purif 1992; 10: 122–131.

    CAS  PubMed  Google Scholar 

  316. Tran LP, Rodella H, Abernathy NJ et al. Lymphatic drainage of hypertonic solution from the peritoneal cavity of anesthetized and conscious sheep. J Appl Physiol 1993; 74: 859–867.

    CAS  PubMed  Google Scholar 

  317. Tran LP, Rodella H, Hay JB, Oreopoulos DG, Johnston MG. Quantitation of lymphatic drainage of the peritoneal cavity in sheep: comparison of direct cannulation techniques with indirect methods to estimate lymph flow. Perit Dial Int 1993; 13: 270–279.

    CAS  PubMed  Google Scholar 

  318. Drake RE, Gabel JC. Diaphragmatic lymph vessel drainage of the peritoneal cavity. Blood Purif 1992; 10: 132–135.

    CAS  PubMed  Google Scholar 

  319. Shockley TR, Ofsthun NJ. Pathways for fluid loss from the peritoneal cavity. Blood Purif 1992; 10: 115–121.

    CAS  PubMed  Google Scholar 

  320. Krediet RT. The effective lymphatic absorption rate is an accurate and useful concept in the physiology of peritoneal dialysis. Perit Dial Int 2004; 24: 309–313.

    PubMed  Google Scholar 

  321. Flessner M. Effective lymphatic absorption rate is not a useful or accurate term to use in the physiology of peritoneal dialysis. Perit Dial Int 2004; 24: 313–317.

    PubMed  Google Scholar 

  322. Tsilibary EC, Wissig SL. Lymphatic absorption from the peritoneal cavity: regulation of patency of mesothelial stomata. Microvasc Res 1983; 25: 22–29.

    CAS  PubMed  Google Scholar 

  323. Abensur H, Romao Jr JE, Brando de Almeida Prado E, Kakahaski E, Sabbaga E, Marcoudes M. Influence of the hydrostatic intraperitoneal pressure and the cardiac function on the lymphatic absorption rate of the peritoneal cavity in CAPD. Adv Perit Dial 1993; 9: 41–45.

    Google Scholar 

  324. Crosbie WA, Snowden S, Parsons V. Changes in lung capillary permeability in chronic uremia. Br Med J 1972; 4: 388–390.

    CAS  PubMed  Google Scholar 

  325. Rubin J, Rust P, Brown P, Popovich RP, Nolph KD. A comparison of peritoneal transport in patients with psoriasis and uremia. Nephron 1981; 29: 185–189.

    CAS  PubMed  Google Scholar 

  326. Diaz-Buxo JA, Farmer CD, Walker PJ, Chandler JT, Holt KL. Effect of hyperparathyroidism on peritoneal clearances. Trans Am Soc Artif Intern Organs 1982; 28: 276–279.

    CAS  PubMed  Google Scholar 

  327. Nolph KD, Whitcomb ME, Schrier RW. Mechanisms for inefficient peritoneal dialysis in acute renal failure associated with heat stress and exercise. Ann Intern Med 1969; 71: 317–326.

    CAS  PubMed  Google Scholar 

  328. Osterby R. Basement membrane morphology in diabetes mellitus. In: Ellenberg M, Rifkin H, eds. Diabetes Mellitus, Theory and Practice, 3rd edn. New York: Medical Examination Publishing Co., 1983, pp. 323–342.

    Google Scholar 

  329. Zimmerman AL, Sablay LB, Aynedjian HS, Bank N. Increased peritoneal permeability in rats with alloxan-induced diabetes mellitus. J Lab Clin Med 1984; 103: 720–730.

    CAS  PubMed  Google Scholar 

  330. Stoenoiu MS, De Vriese AS, Brouet A, Moulin P, Feron O, Lameire N, Devuyst O. Experimental diabetes induces functional and structural changes in the peritoneum. Kidney Int 2002; 62: 668–678.

    PubMed  Google Scholar 

  331. Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. Perit Dial Int 1989; 9: 41–45.

    PubMed  Google Scholar 

  332. Mateijsen MAM, van der Wal AC, Hendriks PMEM, Zweers MM, Mulder J, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. J Am Soc Nephrol 1997; 8: 268A–269A.

    Google Scholar 

  333. Honda K, Nitta K, Horita S, Yumura W, Nikei W. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 1996; 72: 171–176.

    CAS  PubMed  Google Scholar 

  334. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470–479.

    PubMed  Google Scholar 

  335. Nolph KD, Stolz ML, Maher JF. Altered peritoneal permeability in patients with systemic vasculitis. Ann Intern Med 1971; 75: 753–755.

    CAS  PubMed  Google Scholar 

  336. Krediet RT. Peritoneal permeability in continuous ambulatory peritoneal dialysis. Dissertation, Amsterdam: University of Amsterdam, 1986.

    Google Scholar 

  337. Selgas R, Madero R, Munoz J, Huarte E, Rinon C, Miquel JL, Sanchez-Sécilia L. Functional peculiarities of the peritoneum in diabetes mellitus. Dial Transplant 1988; 17: 419–436.

    Google Scholar 

  338. Rubin J, Nolph KD, Arfania D, Brown P, Moore H, Rust P. Influence of patient characteristics on peritoneal clearances. Nephron 1981; 27: 118–121.

    CAS  PubMed  Google Scholar 

  339. Lamb EJ, Worrall J, Buhler R, Harwood S, Catell WR, Dawnay AB. Effect of diabetes and peritonitis on the peritoneal equilibration test. Kidney Int 1995; 47: 1760–1767.

    CAS  PubMed  Google Scholar 

  340. Serlie MJM, Struijk DG, de Blok K, Krediet RT. Differences in fluid and solute transport between diabetic and non diabetic patients at the onset of CAPD. Adv Perit Dial 1997; 13: 29–32.

    CAS  PubMed  Google Scholar 

  341. Smit W, Van Esch S, Struijk DG, Krediet RT. Free water transport in patients starting with peritoneal dialysis: a comparison between diabetic and non diabetic patients. Adv Perit Dial 2004; 20: 13–17

    PubMed  Google Scholar 

  342. Rottembourg J, El Shahat Y, Agrafiotis A et al. Continuous ambulatory peritoneal dialysis in insulin-dependent diabetic patients: a 40-month experience. Kidney Int 1983; 23: 40–45.

    CAS  PubMed  Google Scholar 

  343. Rubin J, Walsh D, Bower JD. Diabetes, dialysate losses, and serum lipids during continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1987; 10: 104–108.

    CAS  PubMed  Google Scholar 

  344. Fassbinder W, Brunner FP, Brynger H et al. Combined report on regular dialysis and transplantation in Europe 20, 1989. Nephrol Dial Transplant 1991; 6: 5–35.

    Google Scholar 

  345. Correia P, Cameron JS, Ogg CS, Williams DG, Bewick M, Hicks JA. End-stage renal failure in SLE with nephritis. Clin Nephrol 1984; 22: 293–302.

    CAS  PubMed  Google Scholar 

  346. Wu GG, Gelbast DR, Hasbargen JA, Inman R, McNamee P, Oreopoulos DG. Reactivation of systemic lupus in three patients undergoing CAPD. Perit Dial Bull 1986; 6: 6–9.

    Google Scholar 

  347. Cantaluppi A. CAPD and systemic diseases. Clin Nephrol 1988; 30 (suppl. 1): S8–S12.

    PubMed  Google Scholar 

  348. Krediet RT, Boeschoten EW, Zuvderhoudt FMJ, Arisz L. Permeability of the peritoneum to proteins in CAPD patients with systemic disease. Proc Eur Dial Transplant Assoc 1985; 22: 405–409.

    Google Scholar 

  349. Brown ST, Ahearn DJ, Nolph KD. Reduced peritoneal clearances in scleroderma increased by intraperitoneal isoproterenol. Ann Intern Med 1973; 78: 891–894.

    CAS  PubMed  Google Scholar 

  350. Robson M, Oreopoulos DG. Dialysis in scleroderma. Ann Intern Med 1978; 88: 843.

    CAS  PubMed  Google Scholar 

  351. Winfield J, Khanna R, Reynolds WJ, Gordon DA, Finkelstein S, Oreopoulos DG. Management of end-stage scleroderma renal disease with continuous ambulatory peritoneal dialysis. Report of two cases. Perit Dial Bull 1982; 2: 174–177.

    Google Scholar 

  352. Copley JB, Smith BJ. Continuous ambulatory peritoneal dialysis and scleroderma. Nephron 1985; 40: 353–356.

    CAS  PubMed  Google Scholar 

  353. Browning MJ, Banks RA, Harrison P et al. Continuous ambulatory peritoneal dialysis in systemic amyloidosis and end-stage renal disease. J R Soc Med 1984; 77: 189–192.

    CAS  PubMed  Google Scholar 

  354. Rosansky SJ, Waddell PH. CAPD in the treatment of primary amyloidosis. Perit Dial Bull 1983; 3: 217–218.

    Google Scholar 

  355. Rosansky SJ, Richards FW. Use of peritoneal dialysis in the treatment of patients with renal failure and paraproteinemia. Am J Nephrol 1985; 5: 361–365.

    CAS  PubMed  Google Scholar 

  356. Heale WF, Letch KA, Dawborn JK, Evans SM. Long term complications of peritonitis. In: Atkins RC, Thomson NM, Farrell PC, eds. Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1981, pp. 284–290.

    Google Scholar 

  357. Rubin J, McFarland S, Hellems EW, Bower JD. Peritoneal dialysis during peritonitis. Kidney Int 1981; 19: 460–464.

    CAS  PubMed  Google Scholar 

  358. Prowant BF, Nolph KD. Clinical criteria for diagnosis of peritonitis. In: Atkins RC, Thomson NM, Farrell PC, eds. Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1981, pp. 257–263.

    Google Scholar 

  359. Raja RM, Kramer MS, Rosenbaum JL, Bolisay C, Krug M. Contrasting changes in solute transport and ultrafiltration with peritonitis in CAPD patients. Trans Am Soc Artif Intern Organs 1981; 27: 68–70.

    CAS  PubMed  Google Scholar 

  360. Rubin J, Ray R, Barnes T, Bower J. Peritoneal abnormalities during infectious episodes of continuous ambulatory peritoneal dialysis. Nephron 1981; 29: 124–127.

    CAS  PubMed  Google Scholar 

  361. Smeby LC, Wideröe TE, Svartås TM, Jörstad S. Changes in water removal due to peritonitis during continuous ambulatory peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 287–292.

    Google Scholar 

  362. Raja RM, Kramer MS, Barber K. Solute transport and ultrafiltration during peritonitis in CAPD patients. ASAIO J 1984; 7: 8–11.

    Google Scholar 

  363. Gokal R, Mistry CD, Peers EM, MIDAS Study Group. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. Perit Dial Int 1995; 15: 226–230.

    CAS  PubMed  Google Scholar 

  364. Posthuma N, ter Wee PM, Donker AJ, Peers EM, Oe PL, Verburgh HA. Icodextrin use in CCPD patients during peritonitis: ultrafiltration and serum disaccharide concentrations. Nephrol Dial Transplant 1998; 13: 2341–2344.

    CAS  PubMed  Google Scholar 

  365. Smit W, van den Berg N, Schouten N, Aikens E, Struijk DG, Krediet RT. Free water transport in fast transport status: a comparison between CAPD peritonitis and long-term PD. Kidney Int 2004; 65: 298–303.

    PubMed  Google Scholar 

  366. Krediet RT, Arisz L. Fluid and solute transport across the peritoneum during continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 1989; 9: 15–25.

    CAS  PubMed  Google Scholar 

  367. Blumenkrantz MJ, Gahl GM, Kopple JD et al. Protein losses during peritoneal dialysis. Kidney Int 1981; 19: 593–602.

    CAS  PubMed  Google Scholar 

  368. Dulaney JT, Hatch Jr FE. Peritoneal dialysis and loss of proteins: a review. Kidney Int 1984; 26: 253–262.

    CAS  PubMed  Google Scholar 

  369. Miller FN, Hammerschmidt DE, Anderson GL, Moore JN. Protein loss induced by complement activation during peritoneal dialysis. Kidney Int 1984; 25: 480–485.

    CAS  PubMed  Google Scholar 

  370. Selgas R, Fernandez-Ryes M-J, Bosque E et al. Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium long-term study. Am J Kidney Dis 1994; 23: 64–73.

    CAS  PubMed  Google Scholar 

  371. Davies SJ, Bryan J, Philips L, Russel GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11; 498–506.

    PubMed  Google Scholar 

  372. Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 2004; 66: 2437–3445.

    CAS  PubMed  Google Scholar 

  373. Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Hoek FJ, Arisz L. A prospective study of peritoneal transport in CAPD patients. Kidney Int 1994; 45: 1739–1744.

    CAS  PubMed  Google Scholar 

  374. Rodriguez AS, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A, Castro e Melo, Krediet RT. Evaluation of peritoneal transport and membrane status in peritoneal dialysis (PD): focus on incident fast transporters. Am J Nephrol 2007; 27: 84–91.

    Google Scholar 

  375. Kush RD, Hallet MD, Ota K et al. Long-term continuous ambulatory peritoneal dialysis: mass transfer and nutritional and metabolic stability. Blood Purif 1990; 8: 1–13.

    CAS  PubMed  Google Scholar 

  376. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. Peritoneal transport characteristics of water, low molecular weight solutes and proteins during long-term continuous ambulatory peritoneal dialysis. Perit Dial Bull 1986; 6: 61–5.

    Google Scholar 

  377. Struijk DG, Krediet RT, Koomen GCM et al. Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 1991; 59: 213–220.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Krediet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krediet, R.T. (2009). The Physiology of Peritoneal Solute, Water, and Lymphatic Transport. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78940-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-78940-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-78939-2

  • Online ISBN: 978-0-387-78940-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics