Skip to main content

Reactive Deposition

  • Chapter
  • First Online:
Cathodic Arcs

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 50))

Abstract

In this relatively short chapter, we consider energetic condensation in the presence of a reactive gas such as oxygen or nitrogen. This is very relevant because many of the industrial applications are based on reactive deposition in which compound coatings are synthesized on the substrate. Introduction of a reactive gas has a number of consequences, starting from the “poisoning” of the cathode surface to enhanced plasma–gas interaction, all of which affects arc erosion, particle transport, the chemistry of the plasma, and the ion velocity and charge state distribution functions. In recent years, multi-element compounds have become popular, like TiAlN, or compounds that consist of four or even more elements. The source of the material can be an alloy cathode, or a second cathode, and/or the reactive gas. Some ternary and quarternary compound films show superior performance due to their nanostructure.

Efim’s Rule: Never repeat an experiment – especially if it was successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kühn, M. and Richter, F., Characteristics in reactive arc evaporation, Surf. Coat. Technol.89, 16–23, (1997).

    Article  Google Scholar 

  2. Vossen, J.L. and Kern, W., Thin Film Processes II. Academic Press, Boston, (1991).

    Google Scholar 

  3. Bunshah, R.F., (ed.) Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications. Noyes, Park Ridge, N.J., (1994).

    Google Scholar 

  4. Schneider, J.M., Rohde, S., Sproul, W.D., and Matthews, A., Recent developments in plasma assisted physical vapour deposition, J Phys. D: Appl. Phys.33, R173–R186, (2000).

    Article  ADS  Google Scholar 

  5. Sproul, W.D., Christie, D.J., and Carter, D.C., Control of reactive sputtering processes, Thin Solid Films491, 1–17, (2005).

    Article  ADS  Google Scholar 

  6. Yushkov, G.Y. and Anders, A., Effect of the pulse repetition rate on the composition and ion charge-state distribution of pulsed vacuum arcs, IEEE Trans. Plasma Sci.26, 220–226, (1998).

    Article  ADS  Google Scholar 

  7. Barnat, E.V. and Lu, T.M., Transient charging effects on insulating surfaces exposed to a plasma during pulse biased dc magnetron sputtering, J. Appl. Phys.90, 5898–5903, (2001).

    Article  ADS  Google Scholar 

  8. Anders, A., Physics of arcing, and implications to sputter deposition, Thin Solid Films502, 22–28, (2006).

    Article  ADS  Google Scholar 

  9. Seino, T. and Sato, T., Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering, J. Vac. Sci. Technol. A20, 634–637, (2002).

    Article  ADS  Google Scholar 

  10. Schneider, J.M. and Sproul, W.D., “Reactive Pulsed DC Magnetron Sputtering and Control,” in Handbook of Thin Film Processing Technology, Glocker, D.A. and Shah, S.I., (Eds.). pp. A5.1:1–A5.1:12, IOP Publishing Ltd, Bristol, UK, (1998).

    Google Scholar 

  11. Segers, A., Depla, D., Eufinger, K., Haemers, J., and De Gryse, R., “Reactive sputtering,” Nouvelles Tendances en Procédés Magnetron et arc pour le Dépot de Couches Minces, Gent, Belgium, pp. 25–39, (2003).

    Google Scholar 

  12. Bergman, C., “Arc plasma physical vapor deposition,” 28th Annual SVC Technical Conference, Philadelphia, PA, pp. 175–191, (1985).

    Google Scholar 

  13. Schemmel, T.D., Cunningham, R.L., and Randhawa, H., Process for high rate deposition of Al2O3, Thin Solid Films181, 597–601, (1989).

    Article  ADS  Google Scholar 

  14. Chhowalla, M. and Unalan, H.E., Thin films of hard cubic Zr3N4 stabilized by stress, Nat. Mater.4, 317–322, (2005).

    Article  ADS  Google Scholar 

  15. Tarrant, R.N., Bilek, M.M.M., Oates, T.W.H., Pigott, J., and McKenzie, D.R., Influence of gas flow and entry point on ion charge, ion counts and ion energy distribution in a filtered cathodic arc, Surf. Coat. Technol.156, 110–114, (2002).

    Article  Google Scholar 

  16. Rogozin, A.F. and Fontana, R.P., Reactive gas-controlled arc process, IEEE Trans. Plasma Sci.25, 680–684, (1997).

    Article  ADS  Google Scholar 

  17. Monteiro, O.R., Wang, Z., and Brown, I.G., Deposition of mullite and mullite-like coatings on silicon carbide by dual-source metal plasma immersion, J. Mater. Res.12, 2401–2410, (1997).

    Article  ADS  Google Scholar 

  18. Martinon-Torres, M., Rehren, T., and Freestone, I.C., Mullite and the mystery of Hessian wares, Nature444, 437–438, (2006).

    Article  ADS  Google Scholar 

  19. Lim, S.H.N., McCulloch, D.G., Bilek, M.M.M., McKenzie, D.R., Russo, S.P., Barnard, A.S., and Torpy, A., Characterization of cathodic arc deposited titanium aluminium nitride films prepared using plasma immersion ion implantation, J. Phys.: Condensed Matter17, 2791–2800, (2005).

    ADS  Google Scholar 

  20. Gan, B.K., Bilek, M.M.M., McKenzie, D.R., Taylor, M.B., and McCulloch, D.G., Effect of intrinsic stress on preferred orientation in AlN thin films, J. Appl. Phys.95, 2130–2134, (2004).

    Article  ADS  Google Scholar 

  21. Gan, B.K., Bilek, M.M.M., McKenzie, D.R., Yang, S., Tompsett, D.A., Taylor, M.B., and McCulloch, D.G., Stress relief and texture formation in aluminium nitride by plasma immersion ion implantation, J. Phys. Condensed Matter16, 1751–1760, (2004).

    Article  ADS  Google Scholar 

  22. Davies, K.E., Gan, B.K., McKenzie, D.R., Bilek, M.M.M., Taylor, M.B., McCulloch, D.G., and Latella, B.A., Correlation between stress and hardness in pulsed cathodic arc deposited titanium/vanadium nitride alloys, J. Phys. Condensed Matter16, 7947–7954, (2004).

    Article  ADS  Google Scholar 

  23. Winkelmann, A., Cairney, J.M., Hoffman, M.J., Martin, P.J., and Bendavid, A., Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties, Surf. Coat. Technol.200, 4213–4219, (2006).

    Article  Google Scholar 

  24. Veprek, S., The search for novel, superhard materials, J. Vac. Sci. Technol. A17, 2401–2420, (1999).

    Article  ADS  Google Scholar 

  25. Veprek, S. and Veprek-Heijman, M.G.J., The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites, Surf. Coat. Technol.201, 6064–6070, (2007).

    Article  Google Scholar 

  26. Gan, Z.H., Yu, G.Q., Tay, B.K., Tan, C.M., Zhao, Z.W., and Fu, Y.Q., Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc, J. Phys. D: Appl. Phys.37, 81–85, (2004).

    Article  ADS  Google Scholar 

  27. Tay, B.K., Zhao, Z.W., and Chua, D.H.C., Review of metal oxide films deposited by filtered cathodic vacuum arc technique, Mat. Sci. Eng. R: Reports52, 1–48, (2006).

    Article  Google Scholar 

  28. Lafferty, J.M., (ed.) Foundations of Vacuum Science and Technology. John Wiley & Sons, New York, (1998).

    Google Scholar 

  29. Hoffman, D.M., Singh, B., and Thomas III, J.H., (eds.), Handbook of Vacuum Science and Technology. Academic Press, San Diego, CA, (1998).

    Google Scholar 

  30. O’Hanlon, J.F., A User’s Guide to Vacuum Technology, 2 nd ed. John Wiley & Sons, New York, (1989).

    Google Scholar 

  31. Redhead, P.A., Hobson, J.P., and Kornelsen, E.V., The Physical Basis of Ultrahigh Vacuum. Chapman & Hall, London, (1968).

    Google Scholar 

  32. Schneider, J.M., Anders, A., Hjörvarsson, B., Petrov, I., Macak, K., Helmerson, U., and Sundgren, J.-E., Hydrogen uptake in alumina thin films synthesized from an aluminum plasma stream in an oxygen ambient, Appl. Phys. Lett.74, 200–202, (1999).

    Article  ADS  Google Scholar 

  33. Hjörvarsson, B., Ryden, J., Karlsson, E., Birch, J., and Sundgren, J.E., Interface effects of hydrogen uptake in Mo/V single-crystal superlattices, Phys. Rev. B43, 6440–6445, (1991).

    Article  ADS  Google Scholar 

  34. Lide, D.R., (ed.) Handbook of Chemistry and Physics, 81st Edition. CRC Press, Boca Raton, N.Y., (2000).

    Google Scholar 

  35. Schneider, J.M., Larsson, K., Lu, J., Olsson, E., and Hjörvarsson, B., Role of hydrogen for the elastic properties of alumina thin films, Appl. Phys. Lett.80, 1144–1146, (2002).

    Article  ADS  Google Scholar 

  36. Bilek, M.M.M. and Milne, W.I., Electronic properties and impurity levels in filtered cathodic vacuum arc (FCVA) amorphous silicon, Thin Solid Films308–309, 79–84, (1997).

    Article  ADS  Google Scholar 

  37. Schneider, J.M., Anders, A., Hjörvarsson, B., and Hultman, L., Magnetic-field-dependent plasma composition of a pulsed arc in a high-vacuum ambient, Appl. Phys. Lett.76, 1531–1533, (2000).

    Article  ADS  Google Scholar 

  38. Randhawa, H., TiN-coated high-speed steel cutting tools, J. Vac. Sci. Technol. A4, 2755–2758, (1986).

    Article  ADS  Google Scholar 

  39. Randhawa, H., Cathodic arc plasma deposition of TiC and TiCxN1–x films, Thin Solid Films153, 209–218, (1987).

    Article  ADS  Google Scholar 

  40. Kimblin, C.W., A review of arcing phenomena in vacuum and in the transition to atmospheric pressure arcs, IEEE Trans. Plasma Sci.10, 322–330, (1971).

    Article  ADS  Google Scholar 

  41. Anders, S. and Jüttner, B., Arc cathode processes in the transition region between vacuum arcs and gaseous arcs, Beitr. Plasmaphys.27, 223–236, (1987).

    Article  ADS  Google Scholar 

  42. Takikawa, H., Yatsuki, M., Sakakibara, T., and Itoh, S., Carbon nanotubes in cathodic vacuum arc discharge, J. Phys. D: Appl. Phys.33, 826–830, (2000).

    Article  ADS  Google Scholar 

  43. Takikawa, H., Minamisawa, S., Xu, G.C., Miyakawa, N., Sakakibara, T., and Shiina, Y., “Cathode erosion and carbon-nanotubed droplet in T-shape filtered arc deposition with various carbon cathodes,” XXIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, pp. 484–487, (2004).

    Google Scholar 

  44. Anders, A. and Jüttner, B., Cathode Mode Transition in High-Pressure Discharge Lamps at Start-Up, Lighting Res. Technol. (GB)22, 111–115, (1990).

    Article  Google Scholar 

  45. Sano, N., Wang, H., Alexandrou, I., Chhowalla, M., Teo, K.B.K., Amaratunga, G.A.J., and Iimura, K., Properties of carbon onions produced by an arc discharge in water, J. Appl. Phys.92, 2783–2788, (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anders, A. (2008). Reactive Deposition. In: Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79108-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79108-1_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79107-4

  • Online ISBN: 978-0-387-79108-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics