Skip to main content

Heterogeneous Cell Ageing in Polymer Electrolyte Fuel Cell Stacks

  • Chapter
Polymer Electrolyte Fuel Cell Durability

Abstract

Polymer electrolyte fuel cell stacks, in the commonly used bipolar arrangement, consist of multiple stacked single cells in a filter-press-type arrangement. The bipolar arrangement connects the cells in series electrically and in parallel for the reactant and coolant flows; therefore, all cells have to carry the same current but they can receive different reactant mass flows. The reactant and the coolant supply may be different owing to statistically varying percolation resistances of the fluids and owing to the position of the cells in the stack. Therefore, the commonly made assumption that individual cells perform equally is valid neither for normal operation nor for the degradation of individual cells. Differences between cells can be of systematic or stochastic nature and translate into differences in the degradation rate under operation or start/stop conditions. The four main cases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blair, J.D., and Dircks, K. (1992) Method and apparatus for monitoring fuel cell performance, US Patent 5,170,124

    Google Scholar 

  • Bradean, R., Haas, H., Eggen, K., Richards, C., and Vrba, T. (2006) Stack Models and Designs for Improving Fuel Cell Startup from Freezing Temperatures, ECS Transactions, 3, 1159–1168

    Article  CAS  Google Scholar 

  • Chang, P.A.C., St-Pierre, J., Stumper, J., and Wetton, B. (2006) Flow distribution in proton exchange membrane fuel cell stacks, J. Power Sources, 162, 340–355

    Article  CAS  Google Scholar 

  • Freunberger, S.A., SchneIDer, I.A., Sui, P.-C., Wokaun, A., Djilali, N., and Büchi, F.N. (2007) Cell Interaction Phenomena in Polymer Electrolyte Fuel Cell Stacks, J. Electrochem. Soc., submitted

    Google Scholar 

  • Heinzel, A., Nolte, R., Ledjeff-Hey, K., and Zedda, M. (1998) Membrane fuel cells – concepts and system design, Electrochim. Acta, 43, 3817–3820 http://www.angstrompower.com

    Article  CAS  Google Scholar 

  • Jiang, R., and Chu, D. (2001) Stack design and performance of polymer electrolyte membrane fuel cells, J. Power Sources, 93, 25–31

    Article  CAS  Google Scholar 

  • Kim, G.S., St-Pierre, J., Promislow, K., and Wetton, B. (2005) Electrical coupling in proton exchange membrane fuel cell stacks, J. Power Sources, 152, 210–217

    Article  CAS  Google Scholar 

  • Kulikovsky, A.A. (2006) Electrostatic broadening of current-free spots in a fuel cell stack: The mechanism of stack aging?, Electrochem. Comm., 8, 1225–1228

    Article  CAS  Google Scholar 

  • Lacy, R.A. (2001) Measuring cell voltages of a fuel cell stack, US Patent 6,313,750

    Google Scholar 

  • Owejan, J.P., Trabold, T.A., Gagliardo, J.J., Jacobson, D.L., Carter, R.N., Hussey, D.S., and Arif, M. (2007a) Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation, J. Power Sources, 171, 626–633

    Article  CAS  Google Scholar 

  • Owejan, J.P., Trabold, T.A., Jacobson, D.L., Arif, M., and Kandlikar, S.G. (2007b) Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell, Int. J. Hydrogen Energy, 32, 4489–4502

    Article  CAS  Google Scholar 

  • Pekula, N., Heller, K., Chuang, P.A., Turhan, A., Mench, M.M., Brenizer, J.S., and Unlu, K. (2005) Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging, Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers Detectors Associated Equipment, 542, 134–141

    Article  CAS  Google Scholar 

  • Promislow, K., and Wetton, B. (2005) A simple, mathematical model of thermal coupling in fuel cell stacks, J. Power Sources, 150, 129–135

    Article  CAS  Google Scholar 

  • Reiser, C. (2004) Battery-boosted, rapID startup of frozen fuel cell United States Patent 6,777,115

    Google Scholar 

  • Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M., L., and Jarvi, T.D., A Reverse-Current Decay Mechanism for Fuel Cells, J. Electrochem. SolID-State Lett., 8, A273–A276, (2005)

    Article  CAS  Google Scholar 

  • Santis, M., Freunberger, S.A., Papra, M., Wokaun, A., and Büchi, F.N. (2006) Experimental investigation of coupling phenomena in polymer electrolyte fuel cell stacks, J. Power Sources, 161, 1076–1083

    Article  CAS  Google Scholar 

  • Wang, G., Ramani, M., and EldrID, S. (2006) Plate In-Plane Electrical Resistance Impact to Stack Performance, ECS Transactions, 3, 1049–1056

    Article  CAS  Google Scholar 

  • Webb, D., and Moller-Holst, S. (2001) Measuring indivIDual cell voltages in fuel cell stacks, J. Power Sources, 103, 54–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Büchi, F.N. (2009). Heterogeneous Cell Ageing in Polymer Electrolyte Fuel Cell Stacks. In: Büchi, F.N., Inaba, M., Schmidt, T.J. (eds) Polymer Electrolyte Fuel Cell Durability. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85536-3_22

Download citation

Publish with us

Policies and ethics