Skip to main content

Selective Cerebrocortical Regional, Laminar, Modular and Cellular Vulnerability and Sparing in Alzheimer’s Disease: Unexploited Clues to Pathogenesis, Pathophysiology, Molecular- and Systems-Level Hypothesis Generation and Experimental Testing

  • Chapter
  • First Online:
Current Hypotheses and Research Milestones in Alzheimer's Disease
  • 980 Accesses

Abstract

Virtually all current hypotheses on the pathogenesis and pathophysiology of Alzheimer’s disease rely on an unvoiced “amorphous” concept of the brain that essentially ignores its highly complex organization at the systems neuroscience level. This is especially true for the cerebral cortex, which happens to be the main target of the disorder and arguably the most complex structure of the entire brain. Here I review increasing evidence that the involvement of the cortex – while abundant – is not diffuse, random, or chaotic. In fact, the highly stereotyped patterns of the three-dimensional involvement of the cerebral cortex indicate that the pathobiological process targets highly selected cells and both anatomically and functionally unique multicellular arrays, while closely situated elements appear considerably resistant to the disease process. This remarkable dichotomy seems to apply pancortically and has essentially escaped recognition by most students of the disorder. Not surprisingly, there is no explanation for the selective involvement versus sparing of circuitry that is immediately adjacent of one another, and this notion seems conspicuously absent from virtually all models of the disorder. In fact, none have so far ever addressed the now highly probable central role of the modular organization of this region in the emerging pattern of vulnerability versus resistance to the disease process. This situation calls for an integration of at least the molecular and the systems neuroscience approaches to formulate new hypotheses on the pathogenesis and pathophysiology of Alzheimer’s disease, in order to enter a new stage in the elucidation of the disorder that accounts better for the factors that make certain neuronal assemblies more vulnerable – while others seem to be distinctly resistant – and precisely how this helps accounts for the clinical manifestations of the disease. Recent observations in animal models of some of the factors that may influence the selectivity of the disease process in the cerebral cortex open the possibility of testing novel hypotheses experimentally, and thus eventually extending the results to translational efforts aimed at new, more effective treatments, early diagnosis, and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cummings JL, Benson DF (1992) Dementia: A Clinical Approach. Boston: Butterworth-Heinemann

    Google Scholar 

  2. Katzman R (1986) Alzheimer’s disease. New Engl J Med 314: 964–973

    Article  PubMed  CAS  Google Scholar 

  3. Ardila A, Rosselli M, Arvizu L, Kuljis RO (1997) Alexia and agraphia in posterior cortical atrophy. Neuropsychiatry Neuropsychol Behav Neurol 10: 52–59

    PubMed  CAS  Google Scholar 

  4. Berthier ML, Leiguarda R, Starkstein SE, Sevlever G, Taratuto AL (1991) Alzheimer’s disease with posterior cortical atrophy. Neurol Neurosurg Psychiatry 54: 1110–1111

    Article  CAS  Google Scholar 

  5. Méndez MF, Zander BA (1991) Dementia presenting with aphasia: clinical characteristics. Neurol Neurosurg Psychiatry 54: 542–545

    Article  Google Scholar 

  6. Levine DN, Lee JM, Fisher CM (1993) The visual variant of Alzheimer’s disease. Neurology 43: 305–313

    PubMed  CAS  Google Scholar 

  7. Jagust WJ, Davies P, Tiller-Borcich JK, Reed BR (1990) Focal Alzheimer’s disease. Neurology 40: 14–19

    PubMed  CAS  Google Scholar 

  8. Hof PR, Bouras C, Constantinidis J, Morrison JH (1989) Balint’s syndrome in Alzheimer’s disease: specific disruption of the occipito-parietal visual pathway. Brain Res 493: 368–375

    Article  PubMed  CAS  Google Scholar 

  9. Braak H, Braak E, Kalus P (1989) Alzheimer’s disease: areal and laminar pathology in the occipital isocortex. Acta Neuropathol 77: 494–506

    Article  PubMed  CAS  Google Scholar 

  10. Gordon B, Selnes O (1984) Progressive aphasia “without dementia”: evidence of more widespread involvement. Neurology 34 (Suppl.): 102

    Google Scholar 

  11. Crystal HA, Horoupian DS, Katzman R, Jotkowitz S (1982) Biopsy proven Alzheimer’s disease presenting as a right parietal lobe syndrome. Ann Neurol 12: 186–188

    Article  PubMed  CAS  Google Scholar 

  12. Alzheimer A (1907) A singular disorder that affects the cerebral cortex. In: Hochberg, CN, Hochberg, FH, 1977. Neurologic Classics in Modern Translation. New York: Hafner Press, pp. 41–43

    Google Scholar 

  13. Kuljis RO (1994) Lesions in the pulvinar in patients with Alzheimer’s disease. J Neuropathol Exp Neurol 53: 202–211

    Article  PubMed  CAS  Google Scholar 

  14. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1: 103–116

    Article  PubMed  CAS  Google Scholar 

  15. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259

    Article  PubMed  CAS  Google Scholar 

  16. Brun A, Englund E (1981) Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathol 5: 549–564

    Article  CAS  Google Scholar 

  17. Tomlinson BE (1992) Ageing and the dementias. In: Hume Adams J and Duchen LW (eds.), Greenfield’s Neuropathology. New York: Oxford, pp. 1284–1410

    Google Scholar 

  18. Whitehouse PJ, Price DL, Clark AW, Coyle JT, Delong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122–126

    Article  PubMed  CAS  Google Scholar 

  19. Tomlinson BE, Irving D, Blessed G (1981) Cell loss in the locus ceruleus in senile dementia of Alzheimer type. J Neurol Sci 49: 213–219

    Article  Google Scholar 

  20. Brun A, Gustafson L (1976) Distribution of cerebral degeneration in Alzheimer’s disease. Arch Psychiatr Nervenkr 223: 15–33

    Article  PubMed  CAS  Google Scholar 

  21. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631–639

    PubMed  CAS  Google Scholar 

  22. Katzman R, Terry RD, De Teresa R (1988) Clinical, pathological and neurochemical changes in dementia; a subgroup with preserved mental status and numerous cortical plaques. Ann Neurol 23: 138–144

    Article  PubMed  CAS  Google Scholar 

  23. McKee AC, Kosik KS, Kowall NW (1991) Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 30: 156–165

    Article  PubMed  CAS  Google Scholar 

  24. Kuljis RO, Tikoo RK (1997) Discontinuous distribution of lesions in striate cortex hypercolumns in Alzheimer’s disease. Vision Res 37: 3573–3591

    Article  PubMed  CAS  Google Scholar 

  25. Hyman BT, Damasio AR, Van Hoesen GW, Barnes CL (1984) Alzheimer’s disease: cell specific pathology isolates the hippocampal formation. Science 225: 1168–1170

    Article  PubMed  CAS  Google Scholar 

  26. Kuljis RO (1997) Modular corticocerebral pathology in Alzheimer’s disease. In: Mangone CA, Allegri RF, Arizaga RL and Ollari JA (eds.), Dementia: A Multidisciplinary Approach. Editorial Sagitario: Buenos Aires, Argentina, pp. 143–155

    Google Scholar 

  27. Kuljis RO, Tikoo RK (1994) Tangentially selective distribution of amyloid-containing plaques in the striate cortex of Alzheimer’s disease. Neurology 44 (Suppl.): A371 (959S)

    Google Scholar 

  28. Akiyama H, Yamada T, McGeer PL, Kawamata T, Tooyama I, Ishii T (1993) Columnar arrangement of β-amyloid protein deposits in the cerebral cortex of patients with Alzheimer’s disease. Acta Neuropathol 85: 400–403

    Article  PubMed  CAS  Google Scholar 

  29. Van Hoesen GW, Solodkin A (1993) Some modular features of temporal cortex in humans as revealed by pathological changes in Alzheimer’s disease. Cereb Cortex 3: 465–475

    Article  PubMed  CAS  Google Scholar 

  30. Solodkin A, Wu GF, Kuljis RO, Van Hoesen GW (1992) The perirhinal cortex (area 35) in man and its pathology in Alzheimer’s disease. Soc Neurosci Abstr 18: 739 (307.8)

    Google Scholar 

  31. Arnold JC (1851) Handbuch der Anatomie des Menschen. Freiburg: Herder

    Google Scholar 

  32. Retzius G (1896) Das Menschenhirn. Studien in der Makroskopischen Morphologie. Stockholm: Norstedt & Söhne

    Google Scholar 

  33. von Economo C (1929) The Cytoarchitectonics of the Human Cerebral Cortex. New York: Oxford

    Google Scholar 

  34. Klinger J (1948) Denkschrifter der Schweizerischen Naturforeschenden Gesselschaft. Zurich: Bard

    Google Scholar 

  35. Ramón Cajal S (1899) Textura del Sistema Nervioso del Hombre y de los Vertebrados. Madrid: Moya

    Google Scholar 

  36. Lorente de Nó R (1922) La corteza cerebral del ratón. Trab. Lab. Invest. Biol. Univ. Madrid, 20, 41–78 (plus 25 plates)

    Google Scholar 

  37. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical barrel field composed of discrete cytoarchitectonic units. Brain Res 17: 205–242

    CAS  Google Scholar 

  38. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s sensory cortex. J Neurophysiol 20: 408–434

    PubMed  CAS  Google Scholar 

  39. Kuljis RO, Rakic P (1989) Neuropeptide Y-containing neurons are situated outside cytochrome oxidase puffs in macaque visual cortex. Visual Neurosci 2: 57–62

    Article  CAS  Google Scholar 

  40. Kuljis RO, Rakic P (1990) Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proc Natl Acad Sci USA 87: 5303–5306

    Article  PubMed  CAS  Google Scholar 

  41. Hubel DH, Wiesel TN (1977) Functional architecture of macaque visual cortex. Phil Trans R Soc Lond B 198: 1–59

    CAS  Google Scholar 

  42. Livingstone MS, Hubel DH (1982) Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proc Natl Acad Sci USA 79: 6098–6101

    Article  PubMed  CAS  Google Scholar 

  43. Szenthágothai J (1975) The “module-concept” in cerebral cortex architecture. Brain Res 95: 475–496

    Article  Google Scholar 

  44. Purves D, Riddle DR, LaMantia AS (1992) Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends Neurosci 15: 362–368

    Article  PubMed  CAS  Google Scholar 

  45. Swindale NV (1990) Is the cerebral cortex modular. Trends Neurosci 5: 345–350

    Google Scholar 

  46. Horton JC (1984) Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Phil Trans R Soc Lond B 304: 199–253

    Article  CAS  Google Scholar 

  47. Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in the primary visual cortex of macaque monkey. Nature 292: 762–764

    Article  PubMed  CAS  Google Scholar 

  48. Damasio H, Kuljis RO, Yuh W, Van Hoesen GW, Ehrhardt J (1991) Magnetic resonance imaging of human intracortical structure in vivo. Cereb Cortex 1: 374–379

    Article  PubMed  CAS  Google Scholar 

  49. Kuljis RO (1992) Vibrissaeless mutant rats with a modular representation of innervated sinus hair follicles in the cerebral cortex. Exp Neurol 115: 146–150

    Article  PubMed  CAS  Google Scholar 

  50. Kuljis RO, Beech RD, Ross SR, Yeung C-Y (1993) Alzheimer-like diffuse amyloid plaques can be induced in transgenic mice expressing human α1-antichymotrypsin. Soc Neurosci Abstr 19: 1035 (421.11)

    Google Scholar 

  51. Wahrle SE, Jiang H, Parsadanian M, (2008) Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 118: 671–682

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodrigo O., K. (2009). Selective Cerebrocortical Regional, Laminar, Modular and Cellular Vulnerability and Sparing in Alzheimer’s Disease: Unexploited Clues to Pathogenesis, Pathophysiology, Molecular- and Systems-Level Hypothesis Generation and Experimental Testing. In: Maccioni, R.B., Perry, G. (eds) Current Hypotheses and Research Milestones in Alzheimer's Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87995-6_16

Download citation

Publish with us

Policies and ethics