Skip to main content

EBSD in the Earth Sciences: Applications, Common Practice, and Challenges

  • Chapter
  • First Online:
Electron Backscatter Diffraction in Materials Science

In the Earth’s middle and lower crust and mantle, rocks deform by creep, and it has long been recognized that lattice preferred orientations (LPO) of the mineral constituents in deformed rocks yield useful information on creep deformation mechanisms, conditions, and kinematics (Leiss et al. 2000; Turner and Weiss 1963; Wenk and Christie 1991). Bulk LPO data are traditionally measured by X-ray texture goniometry, and more recently using neutron and synchrotron sources (Leiss et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In geology the term texture is most commonly used to refer to the microstructure of a rock. Lattice preferred orientations (LPO) or crystallographic preferred orientations (CPO) are the terms most commonly applied by geologists to mean the same as the term texture used by metallurgists.

  2. 2.

    ftp://www.gm.univ-montp2.fr/mainprice//CareWare_Unicef_ Programs/

References

  • Adams BL, Wright SI, Kunze, K (1993) Orientation imaging—the emergence of a new microscopy. Metall Trans A 24(4):819–831

    Article  Google Scholar 

  • Bestmann M, Kunze K, Matthews A (2000) Evolution of a calcite marble shear zone complex on Thassos Island, Greece: microstructural and textural fabrics and their kinematic significance. J Struct Geol 22(11–12):1789–1807

    Article  ADS  Google Scholar 

  • Bestmann M, Prior DJ (2003) Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. J Struct Geol 25(10): 1597–1613

    Article  ADS  Google Scholar 

  • Boyle AP, Prior DJ, Banham MH, Timms NE (1998) Plastic deformation of metamorphic pyrite: new evidence from electron backscatter diffraction and forescatter orientation—contrast imaging. Miner Deposita 34(1):71–81

    Article  CAS  ADS  Google Scholar 

  • Brewer LN, Kotula PG, Michael JR (2008) Multivariate statistical approach to electron backscattered diffraction. Ultramicroscopy 108(6):567–578

    Article  CAS  PubMed  Google Scholar 

  • Cusack M, Perez-Huerta A, Dalbeck P (2007) Common crystallographic control in calcite biomineralization of bivalved shells. Crystengcomm 9(12):1215–1218

    Article  CAS  Google Scholar 

  • Dalbeck P, Cusack M (2006) Crystallography (electron backscatter diffraction) and chemistry (electron probe microanalysis) of the avian eggshell. Cryst Growth Des 6(11):2558–2562

    Article  CAS  Google Scholar 

  • Dalbeck P, England J, Cusack M, Lee MR, Fallick AE (2006) Crystallography and chemistry of the calcium carbonate polymorph switch in M. edulis shells. Eur J Mineral 18(5):601–609

    Article  CAS  Google Scholar 

  • Day A (1993) Developments in the EBSP technique and their application to grain imaging. PhD thesis, University of Bristol, Bristol, U.K.

    Google Scholar 

  • Day AP, Quested TE (1999) A comparison of grain imaging and measurement using horizontal orientation and colour orientation contrast imaging, electron backscatter pattern and optical methods. J Microsc-Oxford 195:186–196

    Article  CAS  Google Scholar 

  • Deer WA, Howie RA, Zussmann J (1992) An Introduction to the rock forming minerals. Longman, Hong Kong

    Google Scholar 

  • Dingley DJ (1984) Diffraction from submicron areas using electron backscattering in a scanning electron microscope. Scan Electron Microsc Part 2:569–575

    Google Scholar 

  • Faul UH, FitzGerald JD (1999) Grain misorientations in partially molten olivine aggregates: an electron backscatter diffraction study. Phys Chem Miner 26(3):187–197

    Article  CAS  ADS  Google Scholar 

  • Feinberg JM, Wenk HR, Renne PR, Scott, GR (2004) Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique. Am Mineral 89(2–3):462–466

    CAS  Google Scholar 

  • Fliervoet TF, Drury MR, Chopra PN (1999) Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonophysics 303(1–4):1–27

    Article  CAS  ADS  Google Scholar 

  • Fliervoet TF, White SH (1995) Quartz deformation in a very fine-grained quartzo-feldspathic mylonite—a lack of evidence for dominant grain-boundary sliding deformation. J Struct Geol 17(8):1095–1109

    Article  ADS  Google Scholar 

  • Franke C, Pennock GM, Drury MR, Engelmann R, Lattard D, Garming JFL, von Dobeneck T, DekkerS MJ (2007) Identification of magnetic Fe-Ti oxides in marine sediments by electron backscatter diffraction in scanning electron microscopy. Geophys J Int 170(2):545–555

    Article  CAS  ADS  Google Scholar 

  • Goldstein JI, Michael JR (2006) The formation of plessite in meteoritic metal. Meteorit Planet Sci 41(4):553–570

    Article  CAS  ADS  Google Scholar 

  • Griesshaber E, Schmahl WW, Neuser R, Pettke T, Blum M, Mutterlose J, Brand U (2007) Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: an optimized materials design with hierarchical architecture. Am Mineral 92(5–6):722–734

    Article  CAS  Google Scholar 

  • Habesch SM (2000) Electron backscattered diffraction analyses combined with environmental scanning electron microscopy: potential applications for non-conducting, uncoated mineralogical samples. Mater Sci Tech 16(11–12):1393–1398

    Article  CAS  Google Scholar 

  • Haddad SC, Worden RH, Prior DJ, Smalley PC (2006) Quartz cement in the Fontainebleau sandstone, Paris basin, France: crystallography and implications for mechanisms of cement growth. J Sediment Res 76(1–2):244–256

    Article  CAS  Google Scholar 

  • Halfpenny A, Prior DJ, Wheeler J (2006) Analysis of dynamic recrystallization and nucleation in a quartzite mylonite. Tectonophysics 427(1–4):3–14

    Article  CAS  ADS  Google Scholar 

  • Hawkins AT, Selverstone J, Brearley AJ, Beane RJ, Ketcham RA, Carlson WD (2007) Origin and mechanical significance of honeycomb garnet in high-pressure metasedimentary rocks from the Tauern Window, Eastern Alps. J Metamorph Geol 25(5):565–583

    Article  CAS  Google Scholar 

  • He YL, Godet S, Jonas JJ (2005) Representation of misorientations in Rodrigues-Frank space: application to the Bain, Kurjumov-Sachs, Nishiyama-Wassermann and Pitsch orientation relationships in the Gibeon meteorite. Acta Mater 53(4):1179–1190

    Article  CAS  Google Scholar 

  • Heidelbach F, Stretton I, Langenhorst F, Mackwell S (2003) Fabric evolution during high shear strain deformation of magnesiowustite (Mg0.8Fe0.2O). J Geophys Res-Sol Earth 108(B3):2154

    Google Scholar 

  • Heilbronner RP, Pauli C (1993) Integrated spatial and orientation analysis of quartz c-axes by computer-aided microscopy. J Struct Geol 15(3–5):369–382

    Article  ADS  Google Scholar 

  • Hirsch DM, Prior DJ, Carlson WD (2003) An overgrowth model to explain multiple, dispersed high-Mn regions in the cores of garnet porphyroblasts. Am Mineral 88(1):131–141

    CAS  Google Scholar 

  • Humphreys FJ, Brough I (1999) High resolution electron backscatter diffraction with a field emission gun scanning electron microscope. J Microsc-Oxford 195:6–9

    CAS  Google Scholar 

  • Hutchinson B, Hagstrom J (2006) Austenite decomposition structures in the Gibeon meteorite. Metall Mater Trans A 37A(6):1811–1818

    Article  CAS  ADS  Google Scholar 

  • Joy DC, Newbury DE (1972) Scanning electron microscope selected area channeling patterns from 1 micron specimen areas. J Mater Sci 7(6):714

    Article  CAS  ADS  Google Scholar 

  • Kameda J, Yamagishi A, Kogure T (2005) Morphological characteristics of ordered kaolinite: investigation using electron back-scattered diffraction. Am Mineral 90(8–9): 1462–1465

    Article  CAS  Google Scholar 

  • Katayama I, Jung H, Karato SI (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32(12):1045–1048

    Article  ADS  Google Scholar 

  • Kogure T (2002) Identification of polytypic groups in hydrous phyllosilicates using electron backscattering patterns. Am Mineral 87(11–12):1678–1685

    CAS  Google Scholar 

  • Kruse R, Stunitz H, Kunze K (2001) Dynamic recrystallization processes in plagioclase porphyroclasts. J Struct Geol 23(11):1781–1802

    Article  ADS  Google Scholar 

  • Kunze K, Adams BL, Heidelbach F, Wenk HR (1994) Orientation imaging microscopy of calcite rocks. In: Bunge HJ, Siegesmunde S, Skrotski W, Weber K (eds) Textures of geological materials. DMG Informationgesellschaft Verlag, Oberursel, Germany pp 127–146

    Google Scholar 

  • Law RD (1990) Crystallographic fabrics: a selective review of their applications to research in structural geology. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics. Geological Society of London, London, pp 335–352

    Google Scholar 

  • Leiss B, Ullemeyer K, Weber K, Brokmeier HG, Bunge HJ, Drury M, Faul U, Fueten F, Frischbutter A, Klein H, Kuhs W, Launeau P, Lloyd GE, Prior DJ, Scheffzuk C, Weiss T, Walther K, Wenk HR (2000) Recent developments and goals in texture research of geological materials—Preface. J Struct Geol 22(11–12):1531–1540

    Article  ADS  Google Scholar 

  • Lloyd GE (1987) Atomic-number and crystallographic contrast images with the SEM—a review of backscattered electron techniques. Mineral Mag 51(359):3–19

    Article  CAS  MathSciNet  Google Scholar 

  • Lloyd GE (1994) An appreciation of the SEM electron channeling technique for microstructural analysis of geological materials. In: Bunge HJ, Siegesmunde S, Skrotski W, Weber K (eds) Textures of geological materials. DGM Informationgesellschaft Verlag, Oberursel, Germany, pp 109–126

    Google Scholar 

  • Lloyd GE, Farmer AB, Mainprice D (1997) Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279(1–4):55–78

    Article  ADS  Google Scholar 

  • Lloyd GE, Schmidt NH, Mainprice D, Prior DJ (1991) Crystallographic textures. Mineral Mag 55(380):331–345

    Article  Google Scholar 

  • Ma C, Rossman GR (2008) Barioperovskite, BaTiO3, a new mineral from the Benitoite mine, California. Am Mineral 93(1):154–157

    Article  CAS  Google Scholar 

  • Mainprice D (2003) Physical properties of rocks and other geomaterials: a special volume to honour professor H. Kern—Introduction. Tectonophysics 370(1–4):7–9

    Article  ADS  Google Scholar 

  • Mainprice D, Bascou J, Cordier P, Tommasi A (2004) Crystal preferred orientations of garnet: comparison between numerical simulations and electron backscattered diffraction (EBSD) measurements in naturally deformed eclogites. J Struct Geol 26(11):2089–2102

    Article  ADS  Google Scholar 

  • Mariani E, Mecklenburgh J, Wheeler J, Prior DJ, Heidelbach F (2009) Microstructure evolution and recrystallisation during creep of MgO single crystals. Acta Mater. DOI: 10.1016/j.actamat.2008.12.029

    Google Scholar 

  • Martin VM, Morgan DJ, Jerram DM, Caddick MJ, Prior DJ, Davidson JP (2008) Bang! month-scale eruption triggering: Santorini volcano, Greece. Science 321:1178

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mehl L, Hirth G (2008) Plagioclase preferred orientation in layered mylonites: evaluation of flow laws for the lower crust. J Geophys Res-Solid Earth 113(B5)

    Google Scholar 

  • Michael JR, Goehner RP (2000) Ab initio primitive cell calculations from EBSD patterns. Microbeam Analysis 2000 Proceedings. International Union of Microbeam Analysis Societies. Conference No 2. Kailua-Kona, Hawaii, USA. pp 203–204.

    Google Scholar 

  • Mork MBE, Moen K (2007) Compaction microstructures in quartz grains and quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis. J Struct Geol 29(11):1843–1854

    Article  ADS  Google Scholar 

  • Nolze G, Wagner G, Neumann RS, Skala R, Geist V (2006) Orientation relationships of carlsbergite in schreibersite and kamacite in the north Chile iron meteorite. Mineral Mag 70(4):373–382

    Article  CAS  Google Scholar 

  • Oesterling N, Heilbronner R, Stunitz H, Barnhoorn A, Molli G (2007) Strain dependent variation of microstructure and texture in naturally deformed Carrara marble. J Struct Geol 29(4):681–696

    Article  ADS  Google Scholar 

  • Ohfuji H, Boyle AP, Prior DJ, Rickard D (2005) Structure of framboidal pyrite: an electron backscatter diffraction study. Am Mineral 90(11–12):1693–1704

    Article  CAS  Google Scholar 

  • Pauli C, Schmid SM, Heilbronner RP (1996) Fabric domains in quartz mylonites: localized three-dimensional analysis of microstructure and texture. J Struct Geol 18(10): 1183–1203

    Article  ADS  Google Scholar 

  • Pieri M, Kunze K, Burlini L, Stretton I, Olgaard DL, Burg JP, Wenk HR (2001) Texture development of calcite by deformation and dynamic recrystallization at 1000 K during torsion experiments of marble to large strains. Tectonophysics 330(1–2):119–140

    Article  CAS  ADS  Google Scholar 

  • Poirier JP, Guillope M (1979) Deformation induced recrystallization of minerals. Bull Mineral 102(2–3):67–74

    CAS  Google Scholar 

  • Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Peruzzo L, Potts GJ, Reddy S, Spiess R, Timms NE, Trimby P, Wheeler J, Zetterstrom L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84(11–12):1741–1759

    CAS  Google Scholar 

  • Prior DJ, Trimby PW, Weber UD, Dingley DJ (1996) Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral Mag 60(403):859–869

    Article  CAS  Google Scholar 

  • Prior DJ, Wheeler J, Peruzzo L, Spiess R, Storey C (2002) Some garnet micro structures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. J Struct Geol 24(6–7):999–1011

    Article  ADS  Google Scholar 

  • Randle V (2004) Application of electron backscatter diffraction to grain boundary characterisation. Int Mater Rev 49(1): 1–11

    Article  CAS  Google Scholar 

  • Reddy SM, Potts GJ, Kelley SP (2001) Ar-40/Ar-39 ages in deformed potassium feldspar: evidence of microstructural control on Ar isotope systematics. Contrib Mineral Petrol 141(2):186–200

    Article  CAS  ADS  Google Scholar 

  • Reddy SM, Timms NE, Pantleon W, Trimby P (2007) Quantitative characterization of plastic deformation of zircon and geological implications. Contrib Mineral Petrol 153(6): 625–645

    Article  CAS  ADS  Google Scholar 

  • Romeo I, Capote R, Lunar R, Cayzer N (2007) Polymineralic orientation analysis of magmatic rocks using electron back-scatter diffraction: implications for igneous fabric origin and evolution. Tectonophysics 444(1–4):45–62

    Article  ADS  Google Scholar 

  • Sander B (1930). GefĂ¼gehunde der Gesteine. Springer, Berlin

    Google Scholar 

  • Sander B (1970). An Introduction to the study of fabrics of geological bodies (English translation). Pergamon Press, Oxford

    Google Scholar 

  • Saruwatari K, Ozaki N, Nagasawa H, Kogure T (2006) Crystallographic alignments in a coccolith (Pleurochrysis carterae) revealed by electron backscattered diffraction (EBSD). Am Mineral 91(11–12):1937–1940

    Article  CAS  Google Scholar 

  • Schmid SM, Casey M (1986) Complete fabric analysis of some commonly observed quartz c-axis patterns. In: Hobbs BE, Heard HC (eds) Mineral and rock deformation: laboratory studies—the Paterson volume. American Geophysical Union, pp 246–261

    Google Scholar 

  • Sephton MA, Howard LE, Bland PA, James RH, Russell SS, Prior DJ, Zolensky ME (2006) Delving into Allende’s dark secrets. Astron Geophys 47(6):37–38

    Article  CAS  Google Scholar 

  • Shigematsu N (1999) Dynamic recrystallization in deformed plagioclase during progressive shear deformation. Tectonophysics 305, 437–452

    Article  ADS  Google Scholar 

  • Skemer P, Karato S (2008) Sheared lherzolite xenoliths revisited. J Geophys Res-Solid Earth 113, B07205

    Google Scholar 

  • Skemer P, Katayama I, Karato SI (2006) Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water. Contrib Mineral Petrol 152(1):43–51

    Article  CAS  ADS  Google Scholar 

  • Spiess R, Peruzzo L, Prior DJ, Wheeler J (2001) Development of garnet porphyroblasts by multiple nucleation, coalescence and boundary misorientation-driven rotations. J Metamorph Geol 19(3):269–290

    CAS  Google Scholar 

  • Storey CD, Prior DJ (2005) Plastic deformation and recrystallization of garnet: a mechanism to facilitate diffusion creep. J Petrol 46(12):2593–2613

    Article  CAS  Google Scholar 

  • Tatham DJ, Lloyd GE, Butler RWH, Casey M (2008) Amphibole and lower crustal seismic properties. Earth Planet Sci Lett 267(1–2):118–128

    Article  CAS  ADS  Google Scholar 

  • Terry MP, Heidelbach F (2004) Superplasticity in garnet from eclogite facies shear zones in the Haram Gebbro, Haramsøya, Norway. Geology 32(4):281–284

    Article  ADS  Google Scholar 

  • Toy VG, Prior DJ, Norris RJ (2008) Quartz fabrics in the Alpine Fault mylonites: influence of pre-existing preferred orientations on fabric development during progressive uplift. J Struct Geol 30(5):602–621

    Article  ADS  Google Scholar 

  • Trepmann CA, Stockhert B (2002) Cataclastic deformation of garnet: a record of synseismic loading and postseismic creep. J Struct Geol 24(11):1845–1856

    Article  ADS  Google Scholar 

  • Trimby PW, Drury MR, Spiers CJ (2000) Misorientations across etched boundaries in deformed rock salt: a study using electron backscatter diffraction. J Struct Geol 22(1):81–89

    Article  ADS  Google Scholar 

  • Trimby PW, Prior DJ (1999) Microstructural imaging techniques: a comparison between light and scanning electron microscopy. Tectonophysics 303(1–4):71–81

    Article  CAS  ADS  Google Scholar 

  • Trimby PW, Prior DJ, Wheeler J (1998) Grain boundary hierarchy development in a quartz mylonite. J Struct Geol 20(7):917–935

    Article  ADS  Google Scholar 

  • Turner FJ, Weiss LE (1963) Structural analysis of metamorphic tectonites. McGraw Hill, New York

    Google Scholar 

  • Urai JL, Means WD, Lister GS (1986) Dynamic recrystallization of minerals. In: Hobbs BE, Heard HC (eds) Mineral and rock deformation (laboratory studies). American Geophysical Union, Washington DC pp 161–200

    Google Scholar 

  • Valcke SLA (2003) Towards the prediction of seismic anisotropy in sedimentary rocks. MSc thesis, University of Leeds, Leeds, U.K.

    Google Scholar 

  • Valcke SLA, Casey M, Lloyd GE, Kendall JM, Fisher QJ (2006) Lattice preferred orientation and seismic anisotropy in sedimentary rocks. Geophys J Int 166(2):652–666

    Article  ADS  Google Scholar 

  • Vauchez A, Dineur F, Rudnick R (2005) Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: insights from the Labait volcano xenoliths (Tanzania). Earth Planet Sci Lett 232(3–4): 295–314

    Article  CAS  ADS  Google Scholar 

  • Venables JA, Harland CJ (1973) Electron backscattering patterns—a new technique for obtaining crystallographic information in the SEM. Philos Mag 27: 1193–1200

    Article  CAS  ADS  Google Scholar 

  • Vonlanthen P, Kunze K, Burlini L, Grobety B (2006) Seismic properties of the upper mantle beneath Lanzarote (Canary Islands): model predictions based on texture measurements by EBSD. Tectonophysics 428(1–4):65–85

    Article  ADS  Google Scholar 

  • Watt LE, Bland PA, Prior DJ, Russell SS (2006) Fabric analysis of Allende matrix using EBSD. Meteorit Planet Sci 41(7):989–1001

    Article  CAS  ADS  Google Scholar 

  • Wenk HR, Christie JM (1991) Comments on the interpretation of deformation textures in rocks. J Struct Geol 13(10): 1091–1110

    Article  ADS  Google Scholar 

  • Whattam SA, Hewins RH, Cohen BA, Seaton NC, Prior DJ (2008) Granoblastic olivine aggregates in magnesian chondrules: planetesimal fragments or thermally annealed solar nebula condensates? Earth Planet Sci Lett 269: 200–211

    Article  CAS  ADS  Google Scholar 

  • Wheeler J, Prior DJ, Jiang Z, Spiess R, Trimby PW (2001) The petrological significance of misorientations between grains. Contrib Mineral Petrol 141(1):109–124

    Article  CAS  ADS  Google Scholar 

  • White S (1977) Geological significance of recovery and recrystallization processes in quartz. Tectonophysics 39(1–3): 143–170

    Article  ADS  Google Scholar 

  • Whitney DL, Goergen ET, Ketcham RA, Kunze K (2008) Formation of garnet polycrystals during metamorphic crystallization. J Metamorph Geol 26(3):365–383

    Article  CAS  Google Scholar 

  • Winkelmann A, Trager-Cowan C, Sweeney F, Day AP, Parbrook P (2007) Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy 107 (4–5):414–421

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Prior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prior, D.J., Mariani, E., Wheeler, J. (2009). EBSD in the Earth Sciences: Applications, Common Practice, and Challenges. In: Schwartz, A., Kumar, M., Adams, B., Field, D. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88136-2_26

Download citation

Publish with us

Policies and ethics