Skip to main content

Dendritic Cells: From Inducers of Specific T-Cell Responses to Promoters of Angiogenesis

  • Chapter
  • First Online:
Dendritic Cells in Cancer

Abstract

Dendritic cells are the most efficient antigen-presenting cells. They capture, process and present antigens to T cells, thus initiating specific immune responses. Taking into account this capability, dendritic cells have been proposed as therapeutic agents against tumors. In recent years other properties of dendritic cells have surfaced. In particular, dendritic cells have been shown to have immunosuppressive properties in some settings and were also capable of inducing proliferation of regulatory T cells. Moreover, it has been shown that dendritic cells are able to generate angiogenic factors and might be able to participate in the angiogenic process. Thus, for tumor therapeutic purposes, further studies on the biology of dendritic cells are necessary in order to generate cells with optimized immunogenic properties, but avoiding a pro-angiogenic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardavin, C. 2003. Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 3:582–590.

    Article  PubMed  CAS  Google Scholar 

  • Baban, B., Hansen, A. M., Chandler, P. R., Manlapat, A., Bingaman, A., Kahler, D. J., Munn, D. H. and Mellor, A. L. 2005. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 17:909–919.

    Google Scholar 

  • Bailey, A. S. and Fleming, W. H. 2003. Converging roads: evidence for an adult hemangioblast. Exp Hematol 31:987–993.

    PubMed  CAS  Google Scholar 

  • Baleeiro, R. B., Anselmo, L. B., Soares, F. A., Pinto, C. A., Ramos, O., Gross, J. L., Haddad, F., Younes, R. N., Tomiyoshi, M. Y., Bergami-Santos, P. C. and Barbuto, J. A. 2008. High frequency of immature dendritic cells and altered in situ production of interleukin-4 and tumor necrosis factor-alpha in lung cancer. Cancer Immunol Immunother 57:1335–1345.

    Article  PubMed  CAS  Google Scholar 

  • Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K. 2000. Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, D. K., Dhodapkar, M. V., Matayeva, E., Steinman, R. M. and Dhodapkar, K. M. 2006. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108:2655–2661.

    Article  PubMed  CAS  Google Scholar 

  • Bonasio, R. and von Andrian, U. H. 2006. Generation, migration and function of circulating dendritic cells. Curr Opin Immunol 18:503–511.

    Article  PubMed  CAS  Google Scholar 

  • Conejo-Garcia, J. R., Benencia, F., Courreges, M. C., Kang, E., Mohamed-Hadley, A., Buckanovich, R. J., Holtz, D. O., Jenkins, A., Na, H., Zhang, L., Wagner, D. S., Katsaros, D., Caroll, R. and Coukos, G. 2004. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10:950–958.

    Article  PubMed  CAS  Google Scholar 

  • Conejo-Garcia, J. R., Buckanovich, R. J., Benencia, F., Courreges, M. C., Rubin, S. C., Carroll, R. G. and Coukos, G. 2005. Vascular leukocytes contribute to tumor vascularization. Blood 105:679–681.

    Article  PubMed  CAS  Google Scholar 

  • Coukos, G., Benencia, F., Buckanovich, R. J. and Conejo-Garcia, J. R. 2005. The role of dendritic cell precursors in tumour vasculogenesis. Br J Cancer 92:1182– 1187.

    Article  PubMed  CAS  Google Scholar 

  • Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., Wei, S., Zou, L., Kryczek, I., Hoyle, G., Lackner, A., Carmeliet, P. and Zou, W. 2004. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64:5535–5538.

    Article  PubMed  CAS  Google Scholar 

  • Diebold, S. S., Montoya, M., Unger, H., Alexopoulou, L., Roy, P., Haswell, L. E., Al-Shamkhani, A., Flavell, R., Borrow, P. and Reis e Sousa, C. 2003. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424:324–328.

    Article  PubMed  CAS  Google Scholar 

  • Djonov, V., Baum, O. and Burri, P. H. 2003. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314:107–117.

    Article  PubMed  Google Scholar 

  • Fainaru, O., Adini, A., Benny, O., Adini, I., Short, S., Bazinet, L., Nakai, K., Pravda, E., Hornstein, M. D., D'Amato, R. J. and Folkman, J. 2008. Dendritic cells support angiogenesis and promote lesion growth in a murine model of endometriosis. Faseb J 22:522–529.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez Pujol, B., Lucibello, F. C., Gehling, U. M., Lindemann, K., Weidner, N., Zuzarte, M. L., Adamkiewicz, J., Elsasser, H. P., Muller, R. and Havemann, K. 2000. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65:287–300.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez Pujol, B., Lucibello, F. C., Zuzarte, M., Lutjens, P., Muller, R. and Havemann, K. 2001. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 80:99–110.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N. 2004. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N. 2005. VEGF as a therapeutic target in cancer. Oncology 69 Suppl 3:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., Kavanaugh, D. and Carbone, D. P. 1996. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. and Carbone, D. P. 1999. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5:2963–2970.

    PubMed  CAS  Google Scholar 

  • Ghanekar, S. A., Bhatia, S., Ruitenberg, J. J., DeLa Rosa, C., Disis, M. L., Maino, V. C., Maecker, H. T. and Waters, C. A. 2007. Phenotype and in vitro function of mature MDDC generated from cryopreserved PBMC of cancer patients are equivalent to those from healthy donors. J Immune Based Ther Vaccines 5:7.

    Article  PubMed  Google Scholar 

  • Gigante, M., Mandic, M., Wesa, A. K., Cavalcanti, E., Dambrosio, M., Mancini, V., Battaglia, M., Gesualdo, L., Storkus, W. J. and Ranieri, E. 2008. Interferon-alpha (IFN-alpha)-conditioned DC preferentially stimulate type-1 and limit Treg-type in vitro T-cell responses from RCC patients. J Immunother 31:254–262.

    Article  PubMed  CAS  Google Scholar 

  • Glod, J., Kobiler, D., Noel, M., Koneru, R., Lehrer, S., Medina, D., Maric, D. and Fine, H. A. 2006. Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood 107:940–946.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman, J. C., Canque, B., Chapuis, F. and Rosenzwajg, M. 1997. In vitro generation of human dendritic cells and cell therapy. Cytokines Cell Mol Ther 3:187–196.

    PubMed  CAS  Google Scholar 

  • Gottfried, E., Kreutz, M., Haffner, S., Holler, E., Iacobelli, M., Andreesen, R. and Eissner, G. 2007. Differentiation of human tumour-associated dendritic cells into endothelial-like cells: an alternative pathway of tumour angiogenesis. Scand J Immunol 65:329–335.

    Article  PubMed  CAS  Google Scholar 

  • Heath, W. R. and Carbone, F. R. 2001. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64.

    Article  PubMed  CAS  Google Scholar 

  • Hieronymus, T., Gust, T. C., Kirsch, R. D., Jorgas, T., Blendinger, G., Goncharenko, M., Supplitt, K., Rose-John, S., Muller, A. M. and Zenke, M. 2005. Progressive and controlled development of mouse dendritic cells from Flt3+CD11b+ progenitors in vitro. J Immunol 174:2552–2562.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S. and Steinman, R. M. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702.

    Article  PubMed  CAS  Google Scholar 

  • Kenny, P. A., Lee, G. Y. and Bissell, M. J. 2007. Targeting the tumor microenvironment. Front Biosci 12:3468–3474.

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia, A. and Sallusto, F. 2001. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 13:291–298.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. W., Truong, T., Bickham, K., Fonteneau, J. F., Larsson, M., Da Silva, I., Somersan, S., Thomas, E. K. and Bhardwaj, N. 2002. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 20 Suppl 4:A8–22.

    Google Scholar 

  • Lewis, C. E., De Palma, M. and Naldini, L. 2007. Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. J. 2001. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–262.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. J. 2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. J., Kanzler, H., Soumelis, V. and Gilliet, M. 2001. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2:585–589.

    Article  PubMed  CAS  Google Scholar 

  • Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rossner, S., Koch, F., Romani, N. and Schuler, G. 1999. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92.

    Article  PubMed  CAS  Google Scholar 

  • Lutz, M. B. and Schuler, G. 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani, A., Sozzani, S., Locati, M., Schioppa, T., Saccani, A., Allavena, P. and Sica, A. 2004. Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp 256:137–145; discussion 146–148, 259–269.

    Article  PubMed  Google Scholar 

  • Maraskovsky, E., Brasel, K., Teepe, M., Roux, E. R., Lyman, S. D., Shortman, K. and McKenna, H. J. 1996. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962.

    Article  PubMed  CAS  Google Scholar 

  • Masurier, C., Pioche-Durieu, C., Colombo, B. M., Lacave, R., Lemoine, F. M., Klatzmann, D. and Guigon, M. 1999. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy. Immunology 96:569–577.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, K., Fainaru, O., Bazinet, L., Pakneshan, P., Benny, O., Pravda, E., Folkman, J. and D'Amato, R. 2008. Dendritic cells augment choroidal neovascularization. Invest Ophthalmol Vis Sci 49:3666–3670.

    Article  PubMed  Google Scholar 

  • Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., Hurwitz, H. I., Dev, I., Nixon, A. B., Lyerly, H. K., Clay, T. and Morse, M. A. 2008. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57:1115–1124.

    Article  PubMed  CAS  Google Scholar 

  • Papetti, M. and Herman, I. M. 2002. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–970.

    PubMed  CAS  Google Scholar 

  • Patan, S. 2000. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Penna, G., Vulcano, M., Sozzani, S. and Adorini, L. 2002. Differential migration behavior and chemokine production by myeloid and plasmacytoid dendritic cells. Hum Immunol 63:1164–1171.

    Article  PubMed  CAS  Google Scholar 

  • Rehman, J., Li, J., Orschell, C. M. and March, K. L. 2003. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169.

    Article  PubMed  Google Scholar 

  • Riboldi, E., Musso, T., Moroni, E., Urbinati, C., Bernasconi, S., Rusnati, M., Adorini, L., Presta, M. and Sozzani, S. 2005. Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol 175:2788–2792.

    PubMed  CAS  Google Scholar 

  • Sanchez-Sanchez, N., Riol-Blanco, L., de la Rosa, G., Puig-Kroger, A., Garcia-Bordas, J., Martin, D., Longo, N., Cuadrado, A., Cabanas, C., Corbi, A. L., Sanchez-Mateos, P. and Rodriguez-Fernandez, J. L. 2004. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood 104:619–625.

    Article  PubMed  CAS  Google Scholar 

  • Schmeisser, A., Garlichs, C. D., Zhang, H., Eskafi, S., Graffy, C., Ludwig, J., Strasser, R. H. and Daniel, W. G. 2001. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49:671–680.

    Article  PubMed  CAS  Google Scholar 

  • Shortman, K. and Liu, Y. J. 2002. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161.

    Article  PubMed  CAS  Google Scholar 

  • Shurin, M. R., Pandharipande, P. P., Zorina, T. D., Haluszczak, C., Subbotin, V. M., Hunter, O., Brumfield, A., Storkus, W. J., Maraskovsky, E. and Lotze, M. T. 1997. FLT3 ligand induces the generation of functionally active dendritic cells in mice. Cell Immunol 179:174–184.

    Article  PubMed  CAS  Google Scholar 

  • Shurin, M. R., Shurin, G. V., Lokshin, A., Yurkovetsky, Z. R., Gutkin, D. W., Chatta, G., Zhong, H., Han, B. and Ferris, R. L. 2006. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356.

    Article  PubMed  CAS  Google Scholar 

  • Sozzani, S., Rusnati, M., Riboldi, E., Mitola, S. and Presta, M. 2007. Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol 28:385–392.

    Article  PubMed  CAS  Google Scholar 

  • Taieb, J., Chaput, N., Menard, C., Apetoh, L., Ullrich, E., Bonmort, M., Pequignot, M., Casares, N., Terme, M., Flament, C., Opolon, P., Lecluse, Y., Metivier, D., Tomasello, E., Vivier, E., Ghiringhelli, F., Martin, F., Klatzmann, D., Poynard, T., Tursz, T., Raposo, G., Yagita, H., Ryffel, B., Kroemer, G. and Zitvogel, L. 2006. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12:214–219.

    Article  PubMed  CAS  Google Scholar 

  • Tian, F., Grimaldo, S., Fujita, M., Cutts, J., Vujanovic, N. L. and Li, L. Y. 2007. The endothelial cell-produced antiangiogenic cytokine vascular endothelial growth inhibitor induces dendritic cell maturation. J Immunol 179:3742–3751.

    PubMed  CAS  Google Scholar 

  • Vicari, A. P., Chiodoni, C., Vaure, C., Ait-Yahia, S., Dercamp, C., Matsos, F., Reynard, O., Taverne, C., Merle, P., Colombo, M. P., O'Garra, A., Trinchieri, G. and Caux, C. 2002. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196:541–549.

    Article  PubMed  CAS  Google Scholar 

  • Whiteside, T. L. 2006. The role of immune cells in the tumor microenvironment. Cancer Treat Res 130:103–124.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Coukos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coukos, G., Benencia, F. (2009). Dendritic Cells: From Inducers of Specific T-Cell Responses to Promoters of Angiogenesis. In: Salter, R., Shurin, M. (eds) Dendritic Cells in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88611-4_16

Download citation

Publish with us

Policies and ethics