Skip to main content

Membranes and Fluorescence Microscopy

  • Chapter
Reviews in Fluorescence 2007

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2007))

Abstract

Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence spectroscopy approaches provide very valuable structurally and dynamically related information on membranes, they generally produce mean parameters from data collected on bulk solutions of many vesicles and lack direct information on the spatial organization at the level of single membranes, a quality that can be provided by microscopy-related techniques. In this chapter, I will attempt to summarize representative examples concerning how microscopy (which provides information on membrane lateral organization by direct visualization) and spectroscopy techniques (which provides information about molecular interaction, order and microenvironment) can be combined to give a powerful new approach to study membrane-related phenomena. Additionally along this chapter, it will be discussed how membrane model systems can be further utilized to gain information about particular membrane-related process like protein(peptide)/membrane interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Borenstain, Y. Barenholz, Characterization of liposomes and other lipid assemblies by multiprobe fluorescence polarization. Chem Phys Lipids 64 (1–3), 117–127 (1993).

    CAS  PubMed  Google Scholar 

  2. L.M. Loura, A. Fedorov, M. Prieto, Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochim Biophys Acta 1511 (2), 236–243 (2001).

    CAS  PubMed  Google Scholar 

  3. L.M. Loura, A. Fedorov, M. Prieto, Fluid–fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys J 80 (2), 776–788 (2001).

    CAS  PubMed  Google Scholar 

  4. M.D. Yeager, G.W. Feigenson, Fluorescence quenching in model membranes: phospholipid acyl chain distributions around small fluorophores. Biochemistry 29 (18), 4380–4392 (1990).

    CAS  PubMed  Google Scholar 

  5. J.R. Silvius, I.R. Nabi, Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes. Mol Membr Biol 23 (1), 5–16 (2006).

    CAS  PubMed  Google Scholar 

  6. C. Reyes Mateo, A. Ulises Acuna, J.C. Brochon, Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys J 68 (3), 978–987 (1995).

    CAS  Google Scholar 

  7. T. Parasassi, G. De Stasio, A. d’Ubaldo, E. Gratton, Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57 (6), 1179–1186 (1990).

    CAS  PubMed  Google Scholar 

  8. E. Perochon, A. Lopez, J.F. Tocanne, Polarity of lipid bilayers. A fluorescence investigation. Biochemistry 31 (33), 7672–7682 (1992).

    CAS  PubMed  Google Scholar 

  9. R.F. de Almeida, L.M. Loura, A. Fedorov, M. Prieto, Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346 (4), 1109–1120 (2005).

    PubMed  Google Scholar 

  10. K. Arnold, A. Losche, K. Gawrisch, 31p-NMR investigations of phase separation in phosphatidylcholine/phosphatidylethanolamine mixtures. Biochim Biophys Acta 645 (1), 143–148 (1981).

    CAS  PubMed  Google Scholar 

  11. A. Filippov, G. Oradd, G. Lindblom, Domain formation in model membranes studied by pulsed-field gradient-NMR: the role of lipid polyunsaturation. Biophys J 93 (9), 3182–3190 (2007).

    CAS  PubMed  Google Scholar 

  12. R.N. Lewis, R.N. McElhaney, Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes: practical considerations. Methods Mol Biol 400, 207–226 (2007).

    CAS  PubMed  Google Scholar 

  13. S. Mabrey, J.M. Sturtevant, Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci USA 73 (11), 3862–3866 (1976).

    CAS  PubMed  Google Scholar 

  14. P.W. van Dijck, A.J. Kaper, H.A. Oonk, J. de Gier, Miscibility properties of binary phosphatidylcholine mixtures. A calorimetric study. Biochim Biophys Acta 470 (1), 58–69 (1977).

    PubMed  Google Scholar 

  15. A. Blume, R.J. Wittebort, S.K. Das Gupta, R.G. Griffin, Phase equilibria, molecular conformation, and dynamics in phosphatidylcholine/phosphatidylethanolamine bilayers. Biochemistry 21 (24), 6243–6253 (1982).

    CAS  PubMed  Google Scholar 

  16. M. Caffrey, F.S. Hing, A temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction. Biophys J 51 (1), 37–46 (1987).

    CAS  PubMed  Google Scholar 

  17. J. Korlach, P. Schwille, W.W. Webb, G.W. Feigenson, Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96 (15), 8461–8466 (1999).

    CAS  PubMed  Google Scholar 

  18. L.A. Bagatolli, E. Gratton, Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78 (1), 290–305 (2000).

    CAS  PubMed  Google Scholar 

  19. L.A. Bagatolli, E. Gratton, Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77 (4), 2090–2101 (1999).

    CAS  PubMed  Google Scholar 

  20. S. Breusegem, M. Levi, N. Barry, Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy. Nephron Exp Nephrol 103(2), e41–e49. (2005).

    Google Scholar 

  21. Q.S. Hanley, K.A. Lidke, R. Heintzmann, D.J. Arndt-Jovin, T.M. Jovin, Fluorescence lifetime imaging in an optically sectioning programmable array microscope (PAM). Cytometry A 67 (2), 112–118 (2005).

    PubMed  Google Scholar 

  22. S.A. Sanchez, E. Gratton, Lipid– protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc Chem Res 38 (6), 469–477 (2005).

    CAS  PubMed  Google Scholar 

  23. Y. Chen, B.C. Lagerholm, B. Yang, K. Jacobson, Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39 (2), 147–153 (2006).

    PubMed  Google Scholar 

  24. J. Ries, P. Schwille, New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10 (24), 3487–3497 (2008).

    CAS  PubMed  Google Scholar 

  25. A. Celli, S. Beretta, E. Gratton, Phase fluctuations on the micron–submicron scale in GUVs composed of a binary lipid mixture. Biophys J 94 (1), 104–116 (2008).

    CAS  PubMed  Google Scholar 

  26. K.A. Lidke, B. Rieger, D.S. Lidke, T.M. Jovin, The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans Image Process 14 (9), 1237–1245 (2005).

    PubMed  Google Scholar 

  27. A.H. Kunding, M.W. Mortensen, S.M. Christensen, D. Stamou, A Fluorescence-based technique to construct size distributions from single object measurements, application to the extrusion of lipid vesicles. Biophys J 95 (3), 1176–1188 (2008).

    Google Scholar 

  28. A.D. Bangham, R.W. Horne, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8, 660–668 (1964).

    CAS  PubMed  Google Scholar 

  29. S. Segota, D. Tezak, Spontaneous formation of vesicles. Adv Colloid Interface Sci 121 (1–3), 51–75 (2006).

    CAS  PubMed  Google Scholar 

  30. D.D. Lasic, Giant Vesicles: A Historical Introduction, in: P.L. Luisi, P. Walde (Eds.), Giant Vesicles, Wiley, New York, (2000), pp. 11–24.

    Google Scholar 

  31. R. Virchow, Ueber das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den thierischen Geweben. Virchows Archiv 6 (4), 562–572 (1854).

    Google Scholar 

  32. C. Neubauer, Ueber das Myelin. Zeitschrift für Analytische Chemie 6, 189–195 (1867).

    Google Scholar 

  33. J.P. Reeves, R.M. Dowben, Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol 73 (1), 49–60 (1969).

    CAS  PubMed  Google Scholar 

  34. L.A. Bagatolli, E. Gratton, A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophys J 79 (1), 434–447 (2000).

    CAS  PubMed  Google Scholar 

  35. T. Baumgart, S.T. Hess, W.W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (6960), 821–824 (2003).

    CAS  PubMed  Google Scholar 

  36. C. Dietrich, L.A. Bagatolli, Z.N. Volovyk, N.L. Thompson, M. Levi, K. Jacobson, E. Gratton, Lipid rafts reconstituted in model membranes. Biophys J 80 (3), 1417–1428 (2001).

    CAS  PubMed  Google Scholar 

  37. G.W. Feigenson, J.T. Buboltz, Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys J 80 (6), 2775–2788 (2001).

    CAS  PubMed  Google Scholar 

  38. N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, P. Schwille, Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278 (30), 28109–28115 (2003).

    CAS  PubMed  Google Scholar 

  39. N. Kahya, D. Scherfeld, P. Schwille, Differential lipid packing abilities and dynamics in giant unilamellar vesicles composed of short-chain saturated glycerol-phospholipids, sphingomyelin and cholesterol. Chem Phys Lipids 135 (2), 169–180 (2005).

    CAS  PubMed  Google Scholar 

  40. S.L. Veatch, S.L. Keller, Organization in lipid membranes containing cholesterol. Phys Rev Lett 89 (26), 268101 (2002).

    PubMed  Google Scholar 

  41. S.L. Veatch, S.L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85 (5), 3074–3083 (2003).

    CAS  PubMed  Google Scholar 

  42. S.L. Veatch, S.L. Keller, Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys Rev Lett 94 (14), 148101 (2005).

    PubMed  Google Scholar 

  43. S.L. Veatch, I.V. Polozov, K. Gawrisch, S.L. Keller, Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J 86 (5), 2910–2922 (2004).

    CAS  PubMed  Google Scholar 

  44. J. Sot, L.A. Bagatolli, F.M. Goñi, A. Alonso, Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys. J. 90, 903–914 (2006).

    CAS  PubMed  Google Scholar 

  45. J. Bernardino de la Serna, J. Perez-Gil, A.C. Simonsen, L.A. Bagatolli, Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J Biol Chem 279 (39), 40715–40722 (2004).

    Google Scholar 

  46. K. Nag, J.S. Pao, R.R. Harbottle, F. Possmayer, N.O. Petersen, L.A. Bagatolli, Segregation of saturated chain lipids in pulmonary surfactant films and bilayers. Biophys J 82 (4), 2041–2051 (2002).

    CAS  PubMed  Google Scholar 

  47. L.A. Bagatolli, E. Gratton, T.K. Khan, P.L. Chong, Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius. Biophys J 79 (1), 416–425 (2000).

    CAS  PubMed  Google Scholar 

  48. Q. Ruan, M.A. Cheng, M. Levi, E. Gratton, W.W. Mantulin, Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87 (2), 1260–1267 (2004).

    CAS  PubMed  Google Scholar 

  49. L.R. Montes, A. Alonso, F.M. Goni, L.A. Bagatolli, Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93 (10), 3548–3554 (2007).

    CAS  PubMed  Google Scholar 

  50. T. Baumgart, A.T. Hammond, P. Sengupta, S.T. Hess, D.A. Holowka, B.A. Baird, W.W. Webb, Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci USA 104 (9), 3165–3170 (2007).

    CAS  PubMed  Google Scholar 

  51. K. Bacia, C.G. Schuette, N. Kahya, R. Jahn, P. Schwille, SNAREs prefer liquid-disordered over “raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J Biol Chem 279 (36), 37951–37955 (2004).

    CAS  PubMed  Google Scholar 

  52. P. Girard, J. Pecreaux, G. Lenoir, P. Falson, J.L. Rigaud, P. Bassereau, A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys J 87 (1), 419–429 (2004).

    CAS  PubMed  Google Scholar 

  53. N. Kahya, D.A. Brown, P. Schwille, Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44 (20), 7479–7489 (2005).

    CAS  PubMed  Google Scholar 

  54. N. Kahya, E.I. Pecheur, W.P. de Boeij, D.A. Wiersma, D. Hoekstra, Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys J 81 (3), 1464–1474 (2001).

    CAS  PubMed  Google Scholar 

  55. G. Koster, M. VanDuijn, B. Hofs, M. Dogterom, Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc Natl Acad Sci USA 100 (26), 15583–15588 (2003).

    CAS  PubMed  Google Scholar 

  56. N. Kahya, Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Chem Phys Lipids 141 (1–2), 158–168 (2006).

    CAS  PubMed  Google Scholar 

  57. D.M. Haverstick, M. Glaser, Visualization of domain formation in the inner and outer leaflets of a phospholipid bilayer. J Cell Biol 106 (6), 1885–1892 (1988).

    CAS  PubMed  Google Scholar 

  58. K. Akashi, H. Miyata, H. Itoh, K. Kinosita, Jr., Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys J 71 (6), 3242–3250 (1996).

    CAS  PubMed  Google Scholar 

  59. M.I. Angelova, D.S. Dimitrov, Liposome electroformation. Faraday Discuss Chem Soc 81, 303–311. (1986).

    CAS  Google Scholar 

  60. M.I. Angelova, S. Soléau, P. Meléard, J.F. Faucon, P. Bothorel, Preparation of giant vesicles by external AC fields. Kinetics and application. Progr Colloid Polym Sci 89, 127–131 (1992).

    CAS  Google Scholar 

  61. A. Moscho, O. Orwar, D.T. Chiu, B.P. Modi, R.N. Zare, Rapid preparation of giant unilamellar vesicles. Proc Natl Acad Sci USA 93 (21), 11443–11447 (1996).

    CAS  PubMed  Google Scholar 

  62. L.A. Bagatolli, T. Parasassi, E. Gratton, Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study. Chem Phys Lipids 105 (2), 135–147 (2000).

    CAS  PubMed  Google Scholar 

  63. N. Düzgünes, L.A. Bagatolli, P. Meers, Y.K. Oh, R.M. Straubinger, Fluorescence Methods in Liposome Research, in: V. Weissig, V. Torchilin (Eds.), Liposomes: A Practical Approach (2nd Edition), Oxford University Press, Oxford, 2003, pp. 105–147.

    Google Scholar 

  64. T. Pott, H. Bouvrais, P. Meleard, Giant unilamellar vesicle formation under physiologically relevant conditions. Chem Phys Lipids 154 (2), 115–119 (2008).

    CAS  PubMed  Google Scholar 

  65. A.C. Simonsen, Activation of phospholipase A2 by ternary model membranes. Biophys J 94 (10), 3966–3975 (2008).

    CAS  PubMed  Google Scholar 

  66. J.M. Crane, L.K. Tamm, Fluorescence microscopy to study domains in supported lipid bilayers. Methods Mol Biol 400, 481–488 (2007).

    CAS  PubMed  Google Scholar 

  67. A. Benda, V. Fagul’ova, A. Deyneka, J. Enderlein, M. Hof, Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research. Langmuir 22 (23), 9580–9585 (2006).

    CAS  PubMed  Google Scholar 

  68. J. Brewer, U. Bernchou, L.A. Bagatolli, 391-Pos. Generalized polarization and fluorescence lifetime imaging analyses of laurdan labeled supported lipid bilayers. Biophys. J. 94, 391 (2008).

    Google Scholar 

  69. J.E. Shaw, R.F. Epand, R.M. Epand, Z. Li, R. Bittman, C.M. Yip, Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Biophys J 90 (6), 2170–2178 (2006).

    CAS  PubMed  Google Scholar 

  70. L.A. Bagatolli, To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758 (10), 1541–1556 (2006).

    CAS  PubMed  Google Scholar 

  71. S. Pautot, B.J. Frisken, D.A. Weitz, Engineering asymmetric vesicles. Proc Natl Acad Sci USA 100 (19), 10718–10721 (2003).

    CAS  PubMed  Google Scholar 

  72. M.H. Jensen, E.J. Morris, A.C. Simonsen, Domain shapes, coarsening, and random patterns in ternary membranes. Langmuir 23 (15), 8135–8141 (2007).

    CAS  PubMed  Google Scholar 

  73. M. Fidorra, S. Hartel, A. Garcia, J. Ipsen, L.A. Bagatolli, 1198-Pos. Do giant unilamellar vesicles composed of binary lipid mixtures obey the lever rule?: A quantitative microscopy imaging approach. Biophys. J. 94, 1198 (2008).

    Google Scholar 

  74. T. Baumgart, G. Hunt, E.R. Farkas, W.W. Webb, G.W. Feigenson, Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim Biophys Acta 1768 (9), 2182–2194 (2007).

    CAS  PubMed  Google Scholar 

  75. S.L. Veatch, S.L. Keller, Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746 (3), 172–185 (2005).

    CAS  PubMed  Google Scholar 

  76. R.F. de Almeida, J. Borst, A. Fedorov, M. Prieto, A.J. Visser, Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence. Biophys J 93 (2), 539–553 (2007).

    PubMed  Google Scholar 

  77. B.R. Lentz, Y. Barenholz, T.E. Thompson, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes. Biochemistry 15 (20), 4529–4537 (1976).

    CAS  PubMed  Google Scholar 

  78. B.R. Lentz, Y. Barenholz, T.E. Thompson, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry 15 (20), 4521–4528 (1976).

    CAS  PubMed  Google Scholar 

  79. H.A. Garda, A.M. Bernasconi, R.R. Brenner, Possible compensation of structural and viscotropic properties in hepatic microsomes and erythrocyte membranes of rats with essential fatty acid deficiency. J Lipid Res 35 (8), 1367–1377 (1994).

    CAS  PubMed  Google Scholar 

  80. M.E. Jones, B.R. Lentz, Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding. Biochemistry 25 (3), 567–574 (1986).

    CAS  PubMed  Google Scholar 

  81. T. Parasassi, M. Di Stefano, M. Loiero, G. Ravagnan, E. Gratton, Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence. Biophys J 66 (1), 120–132 (1994).

    CAS  PubMed  Google Scholar 

  82. E.K. Krasnowska, E. Gratton, T. Parasassi, Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74 (4), 1984–1993 (1998).

    CAS  PubMed  Google Scholar 

  83. C.R. Mateo, M.P. Lillo, J. Gonzalez-Rodriguez, A.U. Acuna, Lateral heterogeneity in human platelet plasma membrane and lipids from the time-resolved fluorescence of trans-parinaric acid. Eur Biophys J 20 (1), 53–59 (1991).

    CAS  PubMed  Google Scholar 

  84. M. Velez, M.P. Lillo, A.U. Acuna, J. Gonzalez-Rodriguez, Cholesterol effect on the physical state of lipid multibilayers from the platelet plasma membrane by time-resolved fluorescence. Biochim Biophys Acta 1235 (2), 343–350 (1995).

    PubMed  Google Scholar 

  85. T. Parasassi, E. Gratton, W.M. Yu, P. Wilson, M. Levi, Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72 (6), 2413–2429 (1997).

    CAS  PubMed  Google Scholar 

  86. K. Gaus, E. Gratton, E.P. Kable, A.S. Jones, I. Gelissen, L. Kritharides, W. Jessup, Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100 (26), 15554–15559 (2003).

    CAS  PubMed  Google Scholar 

  87. G. M’Baye, Y. Mely, G. Duportail, A.S. Klymchenko, Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophys J 95 (3), 1217–1225 (2008).

    PubMed  Google Scholar 

  88. H.M. Kim, H.J. Choo, S.Y. Jung, Y.G. Ko, W.H. Park, S.J. Jeon, C.H. Kim, T. Joo, B.R. Cho, A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8 (5), 553–559 (2007).

    CAS  PubMed  Google Scholar 

  89. L. Jin, A.C. Millard, J.P. Wuskell, X. Dong, D. Wu, H.A. Clark, L.M. Loew, Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90 (7), 2563–2575 (2006).

    CAS  PubMed  Google Scholar 

  90. L. Bagatolli, E. Gratton, T.K. Khan, P.L. Chong, Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius. Biophys J 79 (1), 416–425 (2000).

    CAS  PubMed  Google Scholar 

  91. M. Fidorra, L. Duelund, C. Leidy, A.C. Simonsen, L.A. Bagatolli, Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Biophys J 90 (12), 4437–4451 (2006).

    CAS  PubMed  Google Scholar 

  92. G.W. Feigenson, Phase boundaries and biological membranes. Annu Rev Biophys Biomol Struct 36, 63–77 (2007).

    CAS  PubMed  Google Scholar 

  93. R.F. de Almeida, A. Fedorov, M. Prieto, Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85 (4), 2406–2416 (2003).

    PubMed  Google Scholar 

  94. I. Plasencia, L. Norlen, L.A. Bagatolli, Direct visualization of lipid domains in human skin stratum corneum’s lipid membranes: effect of pH and temperature. Biophys J 93 (9), 3142–3155 (2007).

    CAS  PubMed  Google Scholar 

  95. K. Matsuzaki, Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376 (3), 391–400 (1998).

    CAS  PubMed  Google Scholar 

  96. T. Hara, Y. Mitani, K. Tanaka, N. Uematsu, A. Takakura, T. Tachi, H. Kodama, M. Kondo, H. Mori, A. Otaka, F. Nobutaka, K. Matsuzaki, Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study. Biochemistry 40 (41), 12395–12399 (2001).

    CAS  PubMed  Google Scholar 

  97. F.Y. Chen, M.T. Lee, H.W. Huang, Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84 (6), 3751–3758 (2003).

    CAS  PubMed  Google Scholar 

  98. M. Zasloff, Antimicrobial peptides of multicellular organisms. Nature 415 (6870), 389–395 (2002).

    CAS  PubMed  Google Scholar 

  99. R.I. Lehrer, Primate defensins. Nat Rev Microbiol 2 (9), 727–738 (2004).

    CAS  PubMed  Google Scholar 

  100. N. Papo, Y. Shai, Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42 (2), 458–466 (2003).

    CAS  PubMed  Google Scholar 

  101. Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462 (1–2), 55–70 (1999).

    CAS  PubMed  Google Scholar 

  102. S.T. Henriques, A. Quintas, L.A. Bagatolli, F. Homble, M.A. Castanho, Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1. Mol Membr Biol 24 (4), 282–293 (2007).

    CAS  PubMed  Google Scholar 

  103. R. Mani, J.J. Buffy, A.J. Waring, R.I. Lehrer, M. Hong, Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1. Biochemistry 43 (43), 13839–13848 (2004).

    CAS  PubMed  Google Scholar 

  104. E.E. Ambroggio, D.H. Kim, F. Separovic, C.J. Barrow, K.J. Barnham, L.A. Bagatolli, G.D. Fidelio, Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1–42: a membrane-disrupting peptide. Biophys J 88 (4), 2706–2713 (2005).

    CAS  PubMed  Google Scholar 

  105. E.E. Ambroggio, F. Separovic, J.H. Bowie, G.D. Fidelio, L.A. Bagatolli, Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys J 89 (3), 1874–1881 (2005).

    CAS  PubMed  Google Scholar 

  106. M.P. Boland, F. Separovic, Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochim Biophys Acta 1758 (9), 1178–1183 (2006).

    CAS  PubMed  Google Scholar 

  107. H.E. Hasper, N.E. Kramer, J.L. Smith, J.D. Hillman, C. Zachariah, O.P. Kuipers, B. de Kruijff, E. Breukink, An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313 (5793), 1636–1637 (2006).

    CAS  PubMed  Google Scholar 

  108. H.W. Huang, F.Y. Chen, M.T. Lee, Molecular mechanism of Peptide-induced pores in membranes. Phys Rev Lett 92 (19), 198304 (2004).

    PubMed  Google Scholar 

  109. Y. Tamba, M. Yamazaki, Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry 44 (48), 15823–15833 (2005).

    CAS  PubMed  Google Scholar 

  110. P.E. Thoren, D. Persson, E.K. Esbjorner, M. Goksor, P. Lincoln, B. Norden, Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43 (12), 3471–3489 (2004).

    CAS  PubMed  Google Scholar 

  111. P.D. Moens, L.A. Bagatolli, Profilin binding to sub-micellar concentrations of phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol (3,4,5) trisphosphate. Biochim Biophys Acta 1768 (3), 439–449 (2007).

    CAS  PubMed  Google Scholar 

  112. L.A. Bagatolli, D.D. Binns, D.M. Jameson, J.P. Albanesi, Activation of dynamin II by POPC in giant unilamellar vesicles: a two-photon fluorescence microscopy study. J Protein Chem 21 (6), 383–391 (2002).

    CAS  PubMed  Google Scholar 

  113. C. Arnulphi, S.A. Sanchez, M.A. Tricerri, E. Gratton, A. Jonas, Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains. Biophys J 89 (1), 285–295 (2005).

    CAS  PubMed  Google Scholar 

  114. S.A. Sanchez, L.A. Bagatolli, E. Gratton, T.L. Hazlett, A two-photon view of an enzyme at work: crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles. Biophys J 82 (4), 2232–2243 (2002).

    CAS  PubMed  Google Scholar 

  115. J.M. Holopainen, M.I. Angelova, T. Soderlund, P.K. Kinnunen, Macroscopic consequences of the action of phospholipase C on giant unilamellar liposomes. Biophys J 83 (2), 932–943 (2002).

    CAS  PubMed  Google Scholar 

  116. H. Miyata, K. Ohki, G. Marriot, S. Nishiyama, K. Akashi, K. Kinosita Jr, Cell Deformation Mechanics Studied with Actin-Containing Giant Vesicles, a Cell Mimicking System, in: P.L. Luisi, P. Walde (Eds.), Giant Vesicles, Wiley, New York, 2000, pp. 319–334.

    Google Scholar 

  117. A.P. Liu, D.A. Fletcher, Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys J 91 (11), 4064–4070 (2006).

    CAS  PubMed  Google Scholar 

  118. J. Sot, L.A. Bagatolli, F.M. Goni, A. Alonso, Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 90 (3), 903–914 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Bagatolli .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bagatolli, L.A. (2009). Membranes and Fluorescence Microscopy. In: Reviews in Fluorescence 2007. Reviews in Fluorescence, vol 2007. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88722-7_2

Download citation

Publish with us

Policies and ethics