Skip to main content

Monolithic Silica Glass Cylinders for Optical Fiber

  • Chapter
Sol-Gel Technologies for Glass Producers and Users

Abstract

The emergence of optical communication in the 1970’s led to a search for a means to produce “waveguide quality silica”. Such silica is characterized by having extremely low loss resulting from the lack of a combination of optical absorption (Fe, Co, Ni, Cr, OH- contamination) and scattering (striations, bubbles, etc) as well as freedom from insoluble refractory oxide particles which induce low stress mechanical breaks in fiber. Vapor deposition techniques (OVD [1], MCVD [2], VAD [3]) were the early winners but the glass produced was expensive. So there ensued a search for other processing means. These included “double crucible” melts [4], microporous cylinders made by leaching of phase separated cast glass bodies [5], mechanical compaction [6], centrifugation [7] and sol-gel [8, 9]. Of these, only colloidal-gel bodies reached the stage of commercialization [10] and that after some time. However, there exists the belief that the processes initially developed for the most demanding application will find wider use in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B. Keck, P.C. Schultz, F. Zimar. Method of Forming Optical Waveguide Fibers, U.S. Patent No. 3737292 (1972)

    Google Scholar 

  2. J.B. MacChesney, P.G. O’Connor, F.V. Marcello, J.R. Simpson, P.D. Lazay. Preparation of Low-Loss Optical Fibers using Simultaneous Vapor-Phase Deposition and Fusion, in: Proc. 10th Int. Cong. On Glass Kyoto Japan, 6, (1974)

    Google Scholar 

  3. T. Izawa, N. Inagaki, Materials Technology of Optical Fibers, Mat. Sci. and Tech., 19, (1990)

    Google Scholar 

  4. K.J. Beals, C.R. Day, A Review of Glass Fibers for Optical Communications, Phys. Chem. Glass, 21, 5 (1980)

    Google Scholar 

  5. C.B. Bamford, D.G. Loukos, Development of Molecular Stuffing Process, Glass Tech., 20, 166 (1979)

    CAS  Google Scholar 

  6. K. Yoshida, T. Satoh, N. Enomoto, T. Yagi, H. Hihara, M. Oku, Fabrication of Large Preforms for Low Loss Single Mode Optical Fibers by Hybridized Process, Glastech Bericht (1996)

    Google Scholar 

  7. P.K. Bachmann, P. Geittner, H. Lydtin, Romanowski, M. Thelen, Preparation of quartz tubes by centrifugal deposition of silica particles, ECOC, Brighton (1988).

    Google Scholar 

  8. S. Sakka, K. Kamiya, I. Yananaka, Non-crystalline Solids of TiO2-SiO2 and Al2O3-SiO2 Systems Formed from Alkoxides, in: Proc. 10th Int. Cong Glass, 13, 44 (1974)

    Google Scholar 

  9. R. Clasen, Preparation of High-Purity Silica Glasses by Sintering of Colloidal Prticles, Glastech. Ber., 60, 125 (1987)

    CAS  Google Scholar 

  10. J.B. MacChesney, D.W. Johnson Jr., S.D. Bhandarkar, M.P. Bohrer, J.W. Fleming, E.M. Monberg, D.J. Trevor, Optical Fibers by a Hybrid Process Using Sol-Gel Silica Overcladding Tubes, J. Non-Cryst. Solids, 226, 232 (1998)

    Article  CAS  Google Scholar 

  11. I. Mori, M. Toki, M. M. Ikejiri, M. Takei, M. Aoki, S. Uchiyama, S. Kanbe, Silica Glass, Tubes by New Sol-Gel Methods, J. Non-Cryst. Solids, 100, 523 (1988)

    Article  CAS  Google Scholar 

  12. J. Livage, this volume, chapter 1.1.1

    Google Scholar 

  13. E.A. Chandross, D.W. Johnson Jr., J.B. MacChesney, Vitreous Silica Product via Sol-Gel Using Polymeric Additive, US Patent 5,379,364 (1995)

    Google Scholar 

  14. Stockert, T. F., unpublished data.

    Google Scholar 

  15. H.L. Chandan, R.D. Parker, D. Kalish, in: Fractography in Optical Fibers in Fractography of Glass, R.C. Brat, R.E. Tressler (eds), Plenum, 143 (1994)

    Google Scholar 

  16. S.D. Bhandarkar, H.L. Chandan, D.W. Johnson Jr., J.B. MacChesney, US Patent 5,344,475, (1994), S.D. Bhandarkar, US Patent 3,356,447 (1994)

    Google Scholar 

  17. J.B. MacChesney, D.W. Johnson Jr., P.J. Lemairc, L.G. Cohen, E.M. Rabinovich, Fluorosilicate Substrate Tubes to Eliminate Leaky-Mode Losses in MCVD Single-Mode Fibers with Depressed-index Cladding, in: Proceedings 1985 Optical Fiber Conf., San Diego, Pa 98 (1985)

    Google Scholar 

  18. S. Shibata, T. Kitagawa, M. Horiguch, Wholly Synthesized Fluorine Doped Optical Fibers by the Sol-Gel Method, J. Non-Cryst. Sol, 100, 269 (1988)

    Article  CAS  Google Scholar 

  19. E.M. Rabinovich, D.W. Johnson Jr., A. Mishkevish, E.A. Chandross, J. Thomson, paper GMB-012 at Am. Ceram. Soc. Fall Meeting of Glass and Optical Materials Division, Ceram. Bull., 76, 130 (1997)

    Google Scholar 

  20. R. Clasen, Herstellung sehr reiner Kieselglase durch Sintern submikroskopischer Glasteilchen, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany (1990)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacChesney, J.B., Johnson, D.W. (2004). Monolithic Silica Glass Cylinders for Optical Fiber. In: Aegerter, M.A., Mennig, M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88953-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5455-8

  • Online ISBN: 978-0-387-88953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics