Skip to main content

Associating Living Cells and Computational Models: an Introduction to Dynamic Clamp Principles and its Applications

  • Chapter
  • First Online:
Dynamic-Clamp

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 1))

Abstract

The dynamic-clamp electrophysiological technique allows the mimicking of the electrical effects of arbitrary ion channels, controlled by the experimentalist, activating and inactivating into the membrane of an intracellularly recorded biological cell. Dynamic clamp relies on the establishing of a loop between the injected current and the recorded membrane potential. In this introductory chapter, we first present the principles of the technique, starting by recalling the basis of the equivalent electrical circuit representation of a cellular membrane. We then briefly list some of the issues encountered in the practical implementation of the dynamic-clamp loop. Finally, we overview the numerous applications of the method to the study of neurons, other excitable cells and networks of cells: these include the manipulation of intrinsic ion channels and of single or multiple synaptic inputs to a cell, as well as the construction of whole hybrid networks in which the biological cell interacts with model cells simulated in real time using a digital or analog system. Many of the applications briefly presented here are the subject of the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this equation assumes an “ideal” capacitance, in which the charges are re-equilibrated instantaneously. Cable models have been proposed based on “non-ideal” capacitances, which do affect the high-frequency response of the membrane (see Bedard and Destexhe 2008), but such effects will not be considered here.

  2. 2.

    In most cases, the difference in ionic concentrations – and, consequently, the E rev – is considered constant on the timescale of an electrophysiological experiment: it is continuously maintained by ATP-consuming pumps or ion co-transporters working against the concentration gradient. The instantaneous changes in ion numbers consecutive to ion flow through the channels are considered negligible compared to the total quantities of ions present inside or outside a cell, instantly flowing in to restore the ion concentration close to the membrane. This assumption does not hold in some cases, like intense firing activity modifying the equilibrium for K+ and Cl ions in the hippocampus (McCarren and Alger 1985; Thompson and Gähwiler 1989a, b). Moreover, these ionic concentrations evolve on longer timescales: for example, during development in the mammalian central nervous system, the intracellular [Cl] is progressively lowered due to the delayed expression of a chloride exporter, shifting the E rev of gamma-amino butyric acid (GABA)ergic, Cl-permeable synaptic receptor channels toward more negative values and transforming the function of GABAergic synapses from excitatory to inhibitory (e.g., review by Ben-Ari 2002).

  3. 3.

    This application requires, however, a very precise model of the channels existing in the recorded cell, in order to ensure that the injected current really cancels the biological current. It might not be obvious to detect a mismatch between the two, so that interpretation of such experiments is more difficult that when channels are added.

  4. 4.

    Such inhibition is sometimes called shunting (e.g., Vida et al. 2006): the term shunting is used in this specific case because the main source of inhibition of spikes is the clamp at E rev below spike threshold – as opposed to hyperpolarizing inhibition, which has the effect of actively pulling the V m below rest. However, as we have seen, all membrane conductances are shunting in the sense that they are tending to clamp the V m at their reversal potentials. The term is thus a little bit misleading at first because it seems to falsely imply that only shunting inhibition shunts, by virtue of some special property other conductances would not have.

References

  • Aradi I, Santhakumar V, Soltesz I (2004) Impact of heterogeneous perisomatic IPSC populations on pyramidal cell firing rates. J Neurophysiol 91:2849–2858.

    Article  PubMed  Google Scholar 

  • Arsiero M, Luescher HR, Giugliano M (2005) The mean-field dynamic-clamp: linking single- neuron properties to network activity in in vitro preparations. In: Society for Neuroscience Meeting. 823.1.

    Google Scholar 

  • Bedard C, Destexhe A (2008) A modified cable formalism for modeling neuronal membranes at high frequencies. Biophys J 94:1133–1143.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739.

    Article  PubMed  CAS  Google Scholar 

  • Berecki G, Zegers JG, Verkerk AO, Bhuiyan ZA, de Jonge B, Veldkamp MW, Wilders R, van Ginneken ACG (2005) HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys J 88:566–578.

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt JC, Lillis KP, Stupin LR, White JA (2008) Effects of imperfect dynamic clamp: Computational and experimental results. J Neurosci Methods 169:282–289.

    Article  PubMed  Google Scholar 

  • Brette R, Piwkowska Z, Monier C, Rudolph-Lilith M, Fournier J, Levy M, Fregnac Y, Bal T, Destexhe A (2008) High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron 59:379–391.

    Article  PubMed  CAS  Google Scholar 

  • Brizzi L, Meunier C, Zytnicki D, Donnet M, Hansel D, LaMotte D'Incamps B, Van Vreeswikj C (2004) How shunting inhibition affects the discharge of lumbar motoneurones. A dynamic clamp study in anaesthetised cats. J Physiol 558:671–683.

    Article  PubMed  CAS  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773–782.

    Article  PubMed  CAS  Google Scholar 

  • Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421.

    Article  PubMed  CAS  Google Scholar 

  • de Polavieja GG, Harsch A, Kleppe I, Robinson HP, Juusola M (2005) Stimulus history reliably shapes action potential waveforms of cortical neurons. J Neurosci 25:5657–5665.

    Article  PubMed  Google Scholar 

  • Derjean D, Bertrand S, Le Masson G, Landry M, Morisset V, Nagy F (2003) Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 6:274–281.

    Article  PubMed  CAS  Google Scholar 

  • Desai NS, Walcott EC (2006) Synaptic bombardment modulates muscarinic effects in forelimb motor cortex. J Neurosci 26:2215–2226.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A, Pare D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531–1547.

    PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Dorval AD, Christini DJ, White JA (2001) Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Ann Biomed Eng 29:897–907.

    Article  PubMed  CAS  Google Scholar 

  • Dorval AD, Jr., White JA (2005) Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25:10025–10028.

    Article  PubMed  CAS  Google Scholar 

  • Dorval AD, White JA (2006) Synaptic input statistics tune the variability and reproducibility of neuronal responses. Chaos 16:026105.

    Article  PubMed  Google Scholar 

  • Elson RC, Selverston Al, Abarbanel HD, Rabinovich MI (2002) Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. J Neurophysiol 88:1166–1176.

    Google Scholar 

  • Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811–829.

    Article  PubMed  CAS  Google Scholar 

  • Fellous JM, Sejnowski TJ (2003) Regulation of persistent activity by background inhibition in an in vitro model of a cortical microcircuit. Cereb Cortex 13:1232–1241.

    Article  PubMed  Google Scholar 

  • Fernandez FR, White JA (2008) Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex. J Neurosci 28:3790–3803.

    Article  PubMed  CAS  Google Scholar 

  • Foldy C, Aradi I, Howard A, Soltesz I (2004) Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. Eur J Neurosci 19:119–130.

    Article  PubMed  Google Scholar 

  • Gauck V, Jaeger D (2000) The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. J Neurosci 20:3006–3016.

    PubMed  CAS  Google Scholar 

  • Gauck V, Jaeger D (2003) The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei. J Neurosci 23:8109–8118.

    PubMed  CAS  Google Scholar 

  • Goaillard JM, Marder E (2006) Dynamic clamp analyses of cardiac, endocrine, and neural function. Physiology (Bethesda) 21:197–207.

    Article  Google Scholar 

  • Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21:5229–5238.

    PubMed  CAS  Google Scholar 

  • Gulledge AT, Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron 37:299–309.

    Article  PubMed  CAS  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, Yu Y, McCormick DA (2007) Enhancement of visual responsiveness by spontaneous local network activity in vivo. J Neurophysiol 97:4186–4202.

    Article  PubMed  Google Scholar 

  • Hanson JE, Jaeger D (2002) Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. J Neurosci 22:5164–5172.

    PubMed  CAS  Google Scholar 

  • Harsch A, Robinson HP (2000) Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J Neurosci 20:6181–6192.

    PubMed  CAS  Google Scholar 

  • Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435.

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Cope DW, Crunelli V (1998) Dynamic clamp study of Ih modulation of burst firing and delta oscillations in thalamocortical neurons in vitro. Neuroscience 87:541–550.

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Cope DW, Toth TI, Williams SR, Crunelli V (1999) All thalamocortical neurones possess a T-type Ca2+ 'window' current that enables the expression of bistability-mediated activities. J Physiol 517:805–815.

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Lorincz M, Cope DW, Crunelli V (2008) NeuReal: An interactive simulation system for implementing artificial dendrites and large hybrid networks. J Neurosci Methods 169:290–301.

    Article  PubMed  Google Scholar 

  • Jaeger D, Bower JM (1999) Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. J Neurosci 19:6090–6101.

    PubMed  CAS  Google Scholar 

  • Kreiner L, Jaeger D (2004) Synaptic shunting by a baseline of synaptic conductances modulates responses to inhibitory input volleys in cerebellar Purkinje cells. Cerebellum 3:112–125.

    Article  PubMed  Google Scholar 

  • Le Franc Y, Foutry B, Nagy F, Le Masson G (2001) Nociceptive signal transfer through the dorsal horn network: hybrid and dynamic clamp approaches using a real-time implementation of the Neuron simulation environment. In: Society for Neuroscience Meeting. 927.18

    Google Scholar 

  • Le Masson G, Renaud-Le Masson S, Sharp AA, Marder E, Abbott LF (1992) Real-time interaction between a model neuron and the crustacean stomatogastric nervous system In: Society for Neuroscience Meeting. 18, 1055.

    Google Scholar 

  • Le Masson G, Le Masson S, Moulins M (1995) From conductances to neural network properties: analysis of simple circuits using the hybrid network method. Prog Biophys Mol Biol 64:201–220.

    Article  PubMed  Google Scholar 

  • Le Masson S, Laflaquiere A, Bal T, Le Masson G (1999) Analog circuits for modeling biological neural networks: design and applications. IEEE Trans Biomed Eng 46:638–645.

    Article  PubMed  Google Scholar 

  • Le Masson G, Renaud-Le Masson S, Debay D, Bal T (2002) Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417:854–858.

    Article  PubMed  Google Scholar 

  • Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068.

    PubMed  CAS  Google Scholar 

  • Manor Y, Nadim F (2001) Synaptic depression mediates bistability in neuronal networks with recurrent inhibitory connectivity. J Neurosci 21:9460–9470.

    PubMed  CAS  Google Scholar 

  • Manuel M, Meunier C, Donnet M, Zytnicki D (2005) How much afterhyperpolarization conductance is recruited by an action potential? A dynamic-clamp study in cat lumbar motoneurons. J Neurosci 25:8917–8923.

    Article  PubMed  CAS  Google Scholar 

  • Manuel M, Meunier C, Donnet M, Zytnicki D (2006) The afterhyperpolarization conductance exerts the same control over the gain and variability of motoneurone firing in anaesthetized cats. J Physiol 576:873–886.

    Article  PubMed  CAS  Google Scholar 

  • Manuel M, Meunier C, Donnet M, Zytnicki D (2007) Resonant or not, two amplification modes of proprioceptive inputs by persistent inward currents in spinal motoneurons. J Neurosci 27:12977–12988.

    Article  PubMed  CAS  Google Scholar 

  • McCarren M, Alger BE (1985) Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J Neurophysiol 53:557–571.

    PubMed  CAS  Google Scholar 

  • McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13:1219–1231.

    Google Scholar 

  • Milescu LS, Yamanishi T, Ptak K, Mogri MZ, Smith JC (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38:433–445.

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Kalra R, Aihara K, Robinson HP (2008) Recurrent synaptic input and the timing of gamma-frequency-modulated firing of pyramidal cells during neocortical “UP” states. J Neurosci 28:1871–1881.

    Article  PubMed  CAS  Google Scholar 

  • Netoff TI, Banks MI, Dorval AD, Acker CD, Haas JS, Kopell N, White JA (2005) Synchronization in hybrid neuronal networks of the hippocampal formation. J Neurophysiol 93:1197–1208.

    Article  PubMed  Google Scholar 

  • Nowotny T, Zhigulin VP, Selverston AI, Abarbanel HD, Rabinovich MI (2003) Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J Neurosci 23:9776–9785.

    PubMed  CAS  Google Scholar 

  • Oprisan SA, Prinz AA, Canavier CC (2004) Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys J 87:2283–2298.

    Article  PubMed  CAS  Google Scholar 

  • Piwkowska Z, Pospischil M, Brette R, Sliwa J, Rudolph-Lilith M, Bal T, Destexhe A (2008) Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation. J Neurosci Methods 169:302–322.

    Article  PubMed  Google Scholar 

  • Pospischil M, Piwkowska Z, Rudolph M, Bal T, Destexhe A (2007) Calculating event-triggered average synaptic conductances from the membrane potential. J Neurophysiol 97:2544–2552.

    Article  PubMed  Google Scholar 

  • Prescott SA, De Koninck Y (2003) Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc Natl Acad Sci USA 100:2076–2081.

    Article  PubMed  CAS  Google Scholar 

  • Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ (2006) Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. J Neurosci 26: 9084–9097.

    Article  PubMed  CAS  Google Scholar 

  • Prinz AA, Thirumalai V, Marder E (2003) The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J Neurosci 23:943–954.

    PubMed  CAS  Google Scholar 

  • Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27:218–224.

    Article  PubMed  CAS  Google Scholar 

  • Prinz AA (2004) Neural networks: models and neurons show hybrid vigor in real time. Curr Biol 14:R661–662.

    Article  PubMed  CAS  Google Scholar 

  • Reyes AD, Rubel EW, Spain WJ (1996) In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. J Neurosci 16:993–1007.

    PubMed  CAS  Google Scholar 

  • Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci 6:593–599.

    Article  PubMed  CAS  Google Scholar 

  • Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165.

    Article  PubMed  CAS  Google Scholar 

  • Robinson HP (2008) A scriptable DSP-based system for dynamic conductance injection. J Neurosci Methods 169:271–281.

    Article  PubMed  Google Scholar 

  • Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884–2896.

    Article  PubMed  Google Scholar 

  • Schreiber S, Fellous JM, Tiesinga P, Sejnowski TJ (2004) Influence of ionic conductances on spike timing reliability of cortical neurons for suprathreshold rhythmic inputs. J Neurophysiol 91:194–205.

    Article  PubMed  Google Scholar 

  • Scott S (1979) Stimulation Simulations of Young Yet Cultured Beating Hearts. In: Buffalo, NY: State University of New York.

    Google Scholar 

  • Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995.

    PubMed  CAS  Google Scholar 

  • Sharp AA, Skinner FK, Marder E (1996) Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. J Neurophysiol 76:867–883.

    Google Scholar 

  • Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003) Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci 23:10388–10401.

    PubMed  CAS  Google Scholar 

  • Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441:761–765.

    Google Scholar 

  • Siegelbaum SA, Koester J (2000) Ion channels. In: Principles of neural science, 4th Edition (Kandel ER, Schwartz JH, Jessell TM, eds). New York, NY: McGraw-Hill.

    Google Scholar 

  • Sohal VS, Huguenard JR (2005) Inhibitory coupling specifically generates emergent gamma oscillations in diverse cell types. Proc Natl Acad Sci USA 102:18638–18643.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen M, DeWeerth S, Cymbalyuk G, Calabrese RL (2004) Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. J Neurosci 24:5427–5438.

    Article  PubMed  CAS  Google Scholar 

  • Stein V, Nicoll RA (2003) GABA generates excitement. Neuron 37:375–378.

    Article  PubMed  CAS  Google Scholar 

  • Suter KJ, Jaeger D (2004) Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells. Neuroscience 124:305–317.

    Article  PubMed  CAS  Google Scholar 

  • Swensen AM, Marder E (2001) Modulators with convergent cellular actions elicit distinct circuit outputs. J Neurosci 21:4050–4058.

    PubMed  CAS  Google Scholar 

  • Tan RC, Joyner RW (1990) Electrotonic influences on action potentials from isolated ventricular cells. Circ Res 67:1071–1081.

    PubMed  CAS  Google Scholar 

  • Tateno T, Robinson HP (2006) Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics. J Neurophysiol 95:2650–2663.

    Article  PubMed  CAS  Google Scholar 

  • Thompson SM, Gahwiler BH (1989a) Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J Neurophysiol 61:501–511.

    Google Scholar 

  • Thompson SM, Gahwiler BH (1989b) Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. J Neurophysiol 61:512–523.

    Google Scholar 

  • Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hubner CA, Represa A, Ben-Ari Y, Khazipov R (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314:1788–1792.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich D, Huguenard JR (1996) Gamma-aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study. Proc Natl Acad Sci USA 93:13245–13249.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich D, Huguenard JR (1997) GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. J Neurophysiol 78:1748–1751.

    PubMed  CAS  Google Scholar 

  • Verheijck EE, Wilders R, Joyner RW, Golod DA, Kumar R, Jongsma HJ, Bouman LN, van Ginneken AC (1998) Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J Gen Physiol 111:95–112.

    Article  PubMed  CAS  Google Scholar 

  • Vervaeke K, Hu H, Graham LJ, Storm JF (2006) Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49:257–270.

    Article  PubMed  CAS  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117.

    Article  PubMed  CAS  Google Scholar 

  • Wilders R, Verheijck EE, Kumar R, Goolsby WN, van Ginneken AC, Joyner RW, Jongsma HJ (1996) Model clamp and its application to synchronization of rabbit sinoatrial node cells. Am J Physiol 271:H2168–2182.

    PubMed  CAS  Google Scholar 

  • Williams SR and Stuart GJ (2003) Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 23, 7358–7367.

    PubMed  CAS  Google Scholar 

  • Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7:961–967.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR (2005) Encoding and decoding of dendritic excitation during active states in pyramidal neurons. J Neurosci 25:5894–5902.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR and Mitchell SJ (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nature Neurosci 11:790–798.

    Article  PubMed  CAS  Google Scholar 

  • Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767.

    Google Scholar 

  • Yarom Y (1991) Rhythmogenesis in a hybrid system – interconnecting an olivary neuron to an analog network of coupled oscillators. Neuroscience 44:263–275.

    Article  PubMed  CAS  Google Scholar 

  • Zosimovskii VA, Balaban PM, Zakharov IS, Sokolov EN (1980) [Study of monosynaptic excitatory connections using a biomathematical model of neuronal interaction] Neirofiziologiia 12(4):413–420. Russian.

    PubMed  CAS  Google Scholar 

  • Zosimovskii VA (1980) [Use of EC-1020 computers for experimental studies of synaptic interaction of mollusk neurons] Zh Vyssh Nerv Deiat Im I P Pavlova. 30(6):1306–1311. Russian.

    PubMed  CAS  Google Scholar 

  • Zsiros V, Hestrin S (2005) Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells. J Neurophysiol 93:3248–3256.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jose Gomez and Charlotte Deleuze for comments on an earlier version of this chapter. Research supported by CNRS, ANR, ACI, HFSP, and the European Community (FACETS grant FP6 15879). Z.P. gratefully acknowledges the support of the FRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzanna Piwkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Piwkowska, Z., Destexhe, A., Bal, T. (2009). Associating Living Cells and Computational Models: an Introduction to Dynamic Clamp Principles and its Applications. In: Bal, T., Destexhe, A. (eds) Dynamic-Clamp. Springer Series in Computational Neuroscience, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89279-5_1

Download citation

Publish with us

Policies and ethics