Skip to main content

The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission

  • Chapter
New Horizons

Abstract

The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ∼1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ∼2.5 W.

E.P. Keath, B. Tossman, W. Bradley, and P. Wilson IV are retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Agostinelli , GEANT4—a simulation toolkit. NIM(A) 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  • G.B. Andrews, R.E. Gold , Compact Particle Detector for Space Measurements: Prototype Performance (SPIE, San Diego, 1998)

    Google Scholar 

  • G.B. Andrews, T.H. Zurbuchen , The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev. 131, 523–556 (2007)

    Article  ADS  Google Scholar 

  • F. Bagenal, T.E. Cravens , Pluto’s interaction with the solar wind, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (University of Arizona Press, Tucson, 1997), pp. 523–555

    Google Scholar 

  • F. Bagenal, R.L. McNutt, Jr., Pluto’s interaction with the solar wind. Geophys. Res. Lett. 16, 1229–1232 (1989)

    Article  ADS  Google Scholar 

  • J.P. Biersack, L. Haggmark, Stopping and range of ions in matter. NIM 174, 257 (1980)

    Article  Google Scholar 

  • N. Brosch, The 1985 stellar occultation by Pluto. Mon. Not. R. Astron. Soc. 276, 571–578 (1995)

    ADS  Google Scholar 

  • A.J. Coates, A.D. Johnstone , Pick-up water group ions at Comet Grigg-Skellerup. Geophys. Res. Lett. 20, 483–486 (1993a)

    Article  ADS  Google Scholar 

  • A.J. Coates, A.D. Johnstone , Velocity space diffusion and non-gyrotropy of pickup water group ions at comet Grigg Skjellerup. J. Geophys. Res. 98, 20985–20994 (1993b)

    Article  ADS  Google Scholar 

  • S.J. De Amicis, Instrumentation developed by the Johns Hopkins University Applied Physics Laboratory for Non-APL Spacecraft, Laurel, MD, JHU/APL, 1988

    Google Scholar 

  • P.A. Delamere, F. Bagenal, Pluto’s kinetic interaction with the solar wind. Geophys. Res. Lett. 31, L04807 (2004). doi:10.1029/2003GL018122

    Article  Google Scholar 

  • M. Dryer, A.W. Rizzi , Interaction of the solar wind with the outer planets. Astrophys. Space Sci. 22, 329–351 (1973)

    Article  ADS  Google Scholar 

  • J.L. Elliot, E.W. Dunham , Pluto’s atmosphere. Icarus 77, 148–170 (1989)

    Article  ADS  Google Scholar 

  • J.L. Elliot, A. Ates , The recent expansion of Pluto’s atmosphere. Nature 424, 165–168 (2003)

    Article  ADS  Google Scholar 

  • J.L. Elliot, M.J. Person , Changes in Pluto’s atmosphere: 1988–2006. Astrophys. J. 134, 1–13 (2007)

    Google Scholar 

  • U. Fink, B.A. Smith , Detection of a CH4 atmosphere on Pluto. Icarus 44, 62–71 (1980)

    Article  ADS  Google Scholar 

  • G.H. Fountain, D.Y. Kusnierkiewicz et al., The New Horizons spacecraft. Space Sci. Rev. (2008), this issue. doi:10.1007/s11214-008-9374-8

  • H.J. Frischkorn et al., Total yield and escape depth of electrons from heavy ion solid interactions. IEEE Trans. Nucl. Sci. NS-30 (1983)

    Google Scholar 

  • A.A. Galeev, Encounters with comets: discoveries and puzzles in cometary plasma physics. Astron. Astrophys. 187, 12–20 (1987)

    ADS  Google Scholar 

  • A.A. Galeev, T.E. Cravens , Solar wind stagnation near comets. Astrophys. J. 289, 807–819 (1985)

    Article  ADS  Google Scholar 

  • G. Gloeckler, F.M. Ipavich , The charge-energy-mass spectrometer for 0.3–300 keV/e ions on the AMPTE CCE. IEEE Trans. Geosci. Remote Sens. GE-23, 234–240 (1985)

    Article  ADS  Google Scholar 

  • G. Gloeckler, D. Hovestadt , Cometary pick-up ions observed near Giacobini-Zinner. Geophys. Res. Lett. 13(3), 251–254 (1986)

    Article  ADS  Google Scholar 

  • R.E. Gold, S.C. Solomon , The MESSENGER mission to Mercury: scientific payload. Planet. Space Sci. 49, 1467–1479 (2001)

    Article  ADS  Google Scholar 

  • E.M. Harnett, R.M. Winglee , Three-dimensional multifluid simulations of Pluto’s magnetosphere: A comparison to 3D hybrid simulations. Geophys. Res. Lett. 32, L19104 (2005). doi:10.1029/2005GL023178

    Article  ADS  Google Scholar 

  • D.E. Huddleston, A.J. Coates , Mass loading and velocity diffusion models for heavy pickup ions at comet Grigg-Skjellerup. J. Geophys. Res. 98, 20995–21002 (1993)

    Article  ADS  Google Scholar 

  • K. Kecskemety, T.E. Cravens, Pick-up ions at Pluto. Geophys. Res. Lett. 20, 543 (1993)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104(E3), 5955–5962 (1999)

    Article  ADS  Google Scholar 

  • S.M. Krimigis, D.G. Mitchell , Magnetospheric imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci. Rev. 114, 233–329 (2004)

    Article  ADS  Google Scholar 

  • L.J. Lanzerotti, R.E. Gold , Heliosphere instrument for spectra, composition, and anisotropy at low energies. Astron. Astrophys. Suppl. Ser. 92, 349–363 (1992)

    ADS  Google Scholar 

  • J.L. Lunine, D. Cruikshank et al., Pluto Express. Report of the Science Definition Team: 65, 1995

    Google Scholar 

  • D.J. McComas, F. Allegrini et al., The solar wind around Pluto (SWAP) instrument aboard New Horizons. Space Sci. Rev. (2008), this issue. doi:10.1007/s11214-007-9205-3

  • R.W. McEntire, E.P. Keath , The medium-energy particle analyzer (MEPA) on the AMPTE CCE spacecraft. IEEE Trans. Geosci. Remote Sens. GE-23, 230–233 (1985)

    Article  ADS  Google Scholar 

  • S. McKenna-Lawlor, E. Kirsch , Energetic ions in the environment of comet Halley. Nature 321, 347–349 (1986)

    Article  ADS  Google Scholar 

  • R.L. McNutt Jr., Physics of Space Plasmas. SPI Conf. Proceedings (Scientific Publishers, Cambridge, 1982)

    Google Scholar 

  • R.L. McNutt Jr., Models of Pluto’s upper atmosphere. Geophys. Res. Lett. 16, 1225–1228 (1989)

    Article  ADS  Google Scholar 

  • R.L. McNutt, Jr., D.G. Mitchell , A compact particle detector. SPIE 2804, 217–226 (1996)

    Article  ADS  Google Scholar 

  • R.L. McNutt, Jr., S.C. Solomon , The MESSENGER mission to Mercury: Development history and early mission status. Adv. Space Res. 38, 564–571 (2006)

    Article  ADS  Google Scholar 

  • R.L. McNutt, Jr., D.K. Haggerty , Energetic particles in the Jovian magnetotail. Science 318(5848), 220–222 (2007)

    Article  ADS  Google Scholar 

  • D.A. Mendis, E.J. Smith , Comet-solar wind interaction: Dynamical length scales and models. Geophys. Res. Lett. 13, 239 (1986)

    Article  ADS  Google Scholar 

  • D. Morrison, D. Cruikshank , Nature 300, 425 (1982)

    Article  ADS  Google Scholar 

  • U. Motschmann, K.-H. Glassmeier, Nongyrotropic distribution of pickup ions at comet P/Grigg-Skjellerup: A possible source of wave activity. J. Geophys. Res. 98, 20977–20983 (1993)

    Article  ADS  Google Scholar 

  • M. Neugebauer, Spacecraft observations of the interaction of active comets with the solar wind. Rev. Geophys. 28, 231–252 (1990)

    Article  ADS  Google Scholar 

  • M. Neugebauer, A.F. Cheng et al., Space physics objectives for the Pluto Fast Flyby mission. Report to NASA Space Physics Division, 1993

    Google Scholar 

  • I.G. Richardson, S.W.H. Cowley , Three dimensional ion bulk flows at comet P/Giacobini-Zinner. Geophys. Res. Lett. 13(4), 415–418 (1986)

    Article  ADS  Google Scholar 

  • T.R. Sanderson, K.-P. Wentzel , The interaction of heavy ions from comet P/Giacobini-Zinner with the solar wind. Geophys. Res. Lett. 13(4), 411–414 (1986)

    Article  ADS  Google Scholar 

  • R. Sicardy, T. Widemann , Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168–170 (2003)

    Article  ADS  Google Scholar 

  • A.J. Somogyi, K.I. Gringauz , First observations of energetic particles near comet Halley. Nature 321, 285–288 (1986)

    Article  ADS  Google Scholar 

  • S.A. Stern, The New Horizons Pluto Kuiper Belt mission: An overview with historical context. Space Sci. Rev. (2008), this issue. doi:10.1007/s11214-007-9295-y

  • S.A. Stern, D.C. Slater et al., ALICE: The ultraviolet imaging spectrograph aboard the New Horizons Pluto-Kuiper Belt Mission. Space Sci. Rev. (2008), this issue. doi:10.1007/s11214-008-9407-3

  • F. Tian, O.B. Toon, Hydrodynamic escape of nitrogen from Pluto. Geophys. Res. Lett. (2005). doi:10.1029/2005GL023510

    Google Scholar 

  • L.M. Trafton, D.M. Hunten , Escape processes at Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (University of Arizona Press, Tucson, 1997), pp. 475–521

    Google Scholar 

  • L. Tyler, I.R. Linscott et al., The New Horizons radio science experiment. Space Sci. Rev. (2008), this issue. doi:10.1007/s11214-007-9302-3

  • H.A. Weaver, W.C. Gibson et al., Overview of the New Horizons science payload. Space Sci. Rev. (2008), this issue. doi:10.1007/s11214-008-9376-6

  • D.J. Williams, R.W. McEntire , Energetic particles at Venus: Galileo results. Science 253, 1525–1528 (1991)

    Article  ADS  Google Scholar 

  • D.J. Williams, R.W. McEntire , The Galileo energetic particles detector. Space Sci. Rev. 60, 385–412 (1992)

    Article  ADS  Google Scholar 

  • D.J. Williams , GEOTAIL energetic particles and ion composition experiment. J. Geomagn. Geoelectr. 46, 39–57 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph L. McNutt Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, BV

About this chapter

Cite this chapter

McNutt, R.L. et al. (2009). The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission. In: Russell, C.T. (eds) New Horizons. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89518-5_12

Download citation

Publish with us

Policies and ethics