Skip to main content

Anomeric Effect

  • Chapter
  • First Online:
Carbohydrates
  • 3095 Accesses

Abstract

In substituted cyclohexanes, such as cyclohexanol or its methyl ether, the substituent will preferably assume the equatorial position as opposed to the axial one, due to fewer nonbonded interactions with other ligands (in this case the C3 and the C5 hydrogen atoms) on the cyclohexane ring [1–5]. Thus, the conformational mixture of cyclohexanol or its methyl ether contains, at equilibrium, 89% of the conformer with equatorially oriented hydroxyl or methoxy group and 11% of the conformer with axially oriented hydroxyl or methoxy group, indicating clear preference for the equatorial conformer (Fig. 3.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szarek, W. A.; Horton, D., Eds. “Anomeric Effect, Origin and Consequences”, ACS Symposium Series 87, American Chemical Society, Washington, DC, 1979

    Google Scholar 

  2. Kirby, A. J., “The Anomeric Effect and Related Stereoelectronic Effects at Oxygen”, Springer-Verlag, Berlin, 1983

    Google Scholar 

  3. Deslongchamps, P., “Stereoelectronic Effects in Organic Chemistry”, Pergamon Press, Oxford, 1983

    Google Scholar 

  4. Thatcher, G. R. J., Eds., “The Anomeric Effect and Associated Stereoelectronic Effects”, ACS Symposium Series 539, American Chemical Society, Washington, DC, 1993

    Google Scholar 

  5. Juaristi, E.; Cuevas, G., “The Anomeric Effect”, CRC Press, Boca Raton, 1995

    Google Scholar 

  6. Bates, F. J. and Associates, “Polarimetry, Saccharimetry, and the Sugars”, United States Government Printing Office, Washington, DC, 1942, p.455

    Google Scholar 

  7. Angyal, S. J., “Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α:β ratios of aldopyranoses in aqueous solution”, Aust. J. Chem. (1968) 21, 2737–2746

    Article  CAS  Google Scholar 

  8. Angyal, S. J., “The composition and conformation of sugars in solution”, Angew. Chem. Intern. Ed. (1969) 8, 157–166

    Article  CAS  Google Scholar 

  9. Bonner, W. A., “The acid-catalyzed anomerization of Acetylated Aldopyranoses”, J. Am. Chem. Soc. (1959) 81, 1448–1452

    Article  CAS  Google Scholar 

  10. Lemieux, R. U., “Molecular Rearrangements”, Vol. 2, p 709, de Mayo, P., Ed., Interscience, New York, 1963

    Google Scholar 

  11. Lemieux, R. U.; Hayami, J-Y., “The mechanism of the Anomerization of the Tetra-O-acetyl-D-glucopyranosyl chlorides” Can. J. Chem. (1965) 43, 2162173

    Google Scholar 

  12. Pacsu, E., “Über die Einwirkung von Titan (IV)-chlorid auf Zucker-Derivate, I.: Neue Methode zur Darstellung der α β Aceto-chlor-zucker und Umlagerung des β-Methyl-glucosids in seine α-Form”, Chem. Ber. (1928) 61, 1508–1513

    Google Scholar 

  13. Lindberg, B., “The Zempl.acte.en glucoside synthesis”, Arkiv Kemi, Mineral., Geol., Ser. B (1944), 18, No. 9, 1–7

    CAS  Google Scholar 

  14. Lindberg, B., “Action of strong acids on acetylated glycosides. I. Transformation of some aliphatic tetraacetyl- β -glucosides to the α-form”, Acta Chem. Scand. (1948) 2, 426–429

    Article  CAS  Google Scholar 

  15. Lindberg, B., “Action of strong acids on acetylated glucosides. III. Strong acids and aliphatic glucoside tetraacetates in acetic anhydride-acetic acid solutions”, Acta Chem. Scand. (1949) 3, 1153–1169

    Article  CAS  Google Scholar 

  16. Chü, N. J., Ph. D. thesis, Department of Chemistry, University of Ottawa, 1959

    Google Scholar 

  17. Lemieux, R. U.; Chü, N. J., “Conformation and relative stabilities of acetylated sugars as determined by nuclear magnetic resonance spectroscopy and anomerization equilibria”, Abstracts of Papers, Am. Chem. Soc. 133, 31 N (1958)

    Google Scholar 

  18. Edward, J. T., “Stability of glycosides to acid hydrolysis”, Chemistry & Industry (London) (1955) 1102–1104

    Google Scholar 

  19. Corey, E. J., “The Stereochemistry of α-Haloketones. I. The molecular configurations of some Monocyclic α-Haloketones”, J. Am. Chem. Soc. (1953) 75, 2301–2304

    Article  CAS  Google Scholar 

  20. Lemieux, R. U., “Effects of unshared pairs of electrons and their Solvation Conformational Equilibria”, Pure Appl. Chem. (1971) 27, 527–548

    Article  CAS  Google Scholar 

  21. Winstein, S.; Holness, N. J., “Neighboring Carbon and Hydrogen. XIX. t-Butylcyclo hexyl Derivatives. Quantitative Conformational Analysis”, J. Am. Chem. Soc. (1955) 77, 5562–5578

    Article  CAS  Google Scholar 

  22. Eliel, E.L., Stereochemistry of Carbon Compounds, McGraw Hill, New York, 1962, p.236

    Google Scholar 

  23. Andersen, C.B.; Sepp, D. T., “Conformation and the anomeric effect in 2-oxy-substituted tetrahydropyrans”, Tetrahedron (1968) 24, 1707

    Article  Google Scholar 

  24. Isbell, H. S.; Pigman, W. W., “Bromine oxidation and mutarotation measurements of the α- and β-aldoses”, J. Res. Natl. Bur. Std. (1937) 18, 141–194

    CAS  Google Scholar 

  25. Angyal, S. J., “Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α: ® ratios of aldopyranoses in aqueous solution”, Aust. J. Chem. (1968) 21, 2737–2746

    Article  CAS  Google Scholar 

  26. Angyal, S. J., “The composition and conformation of sugars in solution” Angew. Chem. Intern. Ed. (1969) 8, 157–166

    Article  CAS  Google Scholar 

  27. Reeves, R. E., “Cuprammonium–Glycoside Complexes. II. The Angle Between Hydroxyl Groups on Adjacent Carbon Atoms”, J. Am. Chem. Soc. (1949) 71, 212–214

    Article  CAS  Google Scholar 

  28. Reeves, R. E., “The shape of pyranoside rings”, J. Am. Chem. Soc. (1950) 72, 1499–1506

    Article  CAS  Google Scholar 

  29. Reeves, R. E., “Cuprammonium-Glycoside complexes”, Adv. Carbohydr. Chem. (1951) 6, 107–134

    CAS  Google Scholar 

  30. Hageman, H. J. , PhD Thesis, Leiden (1965)

    Google Scholar 

  31. Eliel, E. L.; Allinger, N.L.; Angyal, S. J.; Morrison, G. A., Conformational Analysis, Interscience, New York, 1965, p. 44

    Google Scholar 

  32. Planje, M. C., PhD Thesis, Leiden (1964)

    Google Scholar 

  33. Booth, G. E.; Ouellette, R. J., “Conformational Analysis. V.1, 2 2-Chloro- and 2-Bromotetrahydropyran”, J. Org. Chem. (1966) 31, 544–546

    Article  CAS  Google Scholar 

  34. Anderson, C. B.; Sepp, D. T., “Conformation and the anomeric effect in 2-halotetrahydropyrans”, J. Org. Chem. (1967) 32, 607–611

    Article  CAS  Google Scholar 

  35. Akishin, P. A.; Vilkov, L. V.; Sokolova, N. P., “Electronographic study of the structure of the molecules of monochloro- and monobromodimethyl ethers”, Izvest. Sibir. Otdel. Akad. Nauk S.S.S.R. (1960) 5, 59–60

    Google Scholar 

  36. Planje, M. C.; Toneman, L. H.; Dallinga, G., Rec. Trav. Chim. (1965) 84, 232

    Article  CAS  Google Scholar 

  37. Bishop, C. T.; Cooper, F. P., “Glycosidation of sugars. II. Methanolysis of D-Xylose. D-Arabinose, D-Lyxose, and D-Ribose”, Can. J. Chem. (1963) 41, 2743–2758

    Article  Google Scholar 

  38. Eliel, E. L.; Giza, C. A., “Conformational analysis. XVII. 2-Alkoxy- and 2-alkylthio- tetrahydropyrans and 2-alkoxy-1,3-dioxanes. Anomeric effect”, J. Org. Chem. (1968) 33, 3754–3758

    Article  CAS  Google Scholar 

  39. Pierson, G. O.; Runquist, O. A., “Conformational analysis of some 2-alkoxytetra- hydropyrans”, J. Org. Chem. (1968) 33, 2572–2574

    Article  CAS  Google Scholar 

  40. Sweet, F.; Brown, R. K., “Cis- and trans-2,4-dimethoxytetrahydropyran. Models for the study of the anomeric effect”, Canad. J. Chem. (1968) 46, 1543–1548

    CAS  Google Scholar 

  41. de Hoog, A. J.; Buys, H. R.; Altona, C.; Havinga, E., “Conformation of non- aromatic ring compounds—LII: NMR spectra and dipole moments of 2-alkoxytetrahydropyrans”, Tetrahedron (1969) 25, 3365–3375

    Article  Google Scholar 

  42. Altona, C.; Havinga, E. cited as unpublished in Romers, C.; Altona, C.; Buys, H. R.; Havinga, E. Topics in Stereochemistry, Eliel, E. L.; Allinger, N. L., Eds., Vol. 4, Wiley-Interscience, New York1969, pp. 39–97

    Google Scholar 

  43. Altona, C.; Romers, C.; Havinga, E., “Molecular structure and conformation of some dihalogenodioxanes”, Tetrahedron Lett. (1959) 1, 16–20

    Article  Google Scholar 

  44. Romers, C.; Altona, C.; Buys, H. R., Havinga, E., “The Anomeric Effect”, in Topics in Stereochemistry, Eliel, E. L.; Allinger, N. L., Eds., Vol. 4, Wiley- Interscience, New York1969, pp. 39–97

    Google Scholar 

  45. Altona, C., Ph. D. Thesis, Leiden, (1964)

    Google Scholar 

  46. Altona, C.; Romers, C, “The conformation of non-aromatic ring compounds. VIII. The crystal structure of cis-2,3-dichloro-1,4-dioxane at -l40°C”, Acta Cryst. (1963) 16, 12251232

    Google Scholar 

  47. Altona, C.; Knobler, C.; Romers, C., “The conformation of non-aromatic ring compounds. VII. Crystal structure of trans-2,5-dichloro-1,4-dioxane at 125°C”, Acta Cryst. (1963) 16,1217–1225

    Article  CAS  Google Scholar 

  48. de Wolf, N.; Romers, C.; Altona, C., “The conformation of non-aromatic ring compounds. XXXIV. The crystal structure of trans-2,3-dichloro-1,4-thioxane at -185°C”. Acta. Cryst. (1967) 22, 715–719

    Article  Google Scholar 

  49. Lemieux, R. U.; Koto, S.; Voisin, D., “The Exo-Anomeric Effect”, in Szarek, W. A.; Horton, D., Eds., “The Anomeric Effect: Origin and Consequences”, Am. Chem. Soc. Symposium Series, Vol. 87, Washington 1979, pp 17–29

    Google Scholar 

  50. Hutchins, R. O.; Kopp, L. D.; Eliel, E. L., “Repulsion of syn-axial electron pairs. The rabbit-ear effect”, J. Am. Chem. Soc. (1968) 90, 7174–7175

    Article  CAS  Google Scholar 

  51. Kubo, M., Sci. Papers Inst. Phys. Chem. Res. (Tokyo) (1936) 29, 179

    CAS  Google Scholar 

  52. Aoki, K., J. Chem. Soc. (Japan), Pure Chem. Sect. (1953) 74, 110; Chem. Abstr. (1953) 47, 5191

    CAS  Google Scholar 

  53. Astrup, E. E., “Molecular structure of dimethoxy-methane, MeOCH 2 OMe”, Acta Chemica Scand. (1971) 25, 1494–1495

    Article  CAS  Google Scholar 

  54. Booth, H.; Lemieux, R. U., “Anomeric effect: the conformational equilibriums of tetrahydro-1,3-oxazines and 1-methyl-1,3-diazane”, Can. J. Chem. (1971) 49, 777–788

    Article  CAS  Google Scholar 

  55. Zefirov, N. S., “The problem of conformational effects”, Tetrahedron (1977) 33, 3192

    Article  Google Scholar 

  56. Eliel, E, L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A., Conformational Anal., p. 460, Wiley-Interscience, 1965

    Google Scholar 

  57. Horton, D.; Turner, W. N., “Conformational and configurational studies on some Acetylated Aldopyranosyl Halides”, J. Org. Chem. (1965) 30, 3387–3394

    Article  Google Scholar 

  58. Lemieux, R. U.; Morgan, A. R., “The abnormal conformations of Pyridinium α-glycopyranosides”, Can. J. Chem. (1965) 43, 2205–2213

    Article  CAS  Google Scholar 

  59. James, M. N. G., Proc. Can. Fed. Biol. Soc. (1969) 13, 71

    Google Scholar 

  60. Lemieux, R. U.; Koto, S., “The conformational properties of glycosidic linkages”, Tetrahedron (1974) 30, 1933–1944

    Article  CAS  Google Scholar 

  61. Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. “Halide ion catalyzed glycosidation reactions. Syntheses of α-linked disaccharides”, J. Am. Chem. Soc. (1975) 97, 4056–4062

    Article  CAS  Google Scholar 

  62. Saluja, S. S., Ph. D. Thesis, University of Alberta, 1971

    Google Scholar 

  63. Paulsen, H.; Györgdeák, Z.; Friedmann, M., “Konformationsanalyse, V. Einfluß des anomeren und inversen anomeren Effektes auf Konformationsgleichgewichte von N-substituierten N-Pentopyranosiden”, Chem. Ber. (1974) 107, 1590–1613

    Article  CAS  Google Scholar 

  64. Grein, F.; Deslongchamps, P., “The anomeric and reverse anomeric effect. A simple energy decomposition model for acetals and protonated acetals, Can. J. Chem. (1992) 70, 1562–1572

    Article  CAS  Google Scholar 

  65. Grein, F., “Anomeric and Reverse Anomeric Effect in Acetals and Related Functions” in “The Anomeric Effect and Associated Stereoelectronic Effects”, Thatcher, G. R. J., Ed. ACS Symposium Series No. 539, 205–226, ACS, Washington, DC, 1993

    Chapter  Google Scholar 

  66. Finch, P.; Nagpurkar, A. G., “The reverse anomeric effect: further observations on N-glycosylimidazoles”, Carbohydr. Res. (1976) 49, 275–287

    Article  CAS  Google Scholar 

  67. Ratcliffe, A. J.; Fraser-Reid, B., “Generation of -D-glucopyranosylacetonitrilium ions. Concerning the reverse anomeric effect”, J. Chem. Soc. Perkin 1(1990) 747–750

    Article  Google Scholar 

  68. Batchelor, J. G., “Conformational analysis of cyclic amines using carbon-13 chemical shift measurements: dependence of conformation upon ionisation state and solvent”, J. Soc., Perkin Trans. 2 (1976) 1585–1590

    Article  Google Scholar 

  69. Booth, H.; Jozefowicz, M. L., “The application of low temperature 13C nuclear magnetic resonance spectroscopy to the determination of the A values of amino-, methylamino-, and dimethylamino-substituents in cyclohexane” J. Chem. Soc. Perkin Trans. 2 (1976) 895–901

    Google Scholar 

  70. Sicher, J.; Jonás, J.; Tichý, M., “The a-values of the amino acid and dimethylamino groups”, Tetrahedron Lett. (1963) 4, 825–830

    Google Scholar 

  71. Eliel, E. L.; Della, E. W.; Williams, T. H., “The conformational equilibrium of the amino group”, Tetrahedron Lett. (1963) 4, 831–835

    Google Scholar 

  72. Ford, R. A.; Allinger, N. L., “Conformational analysis. LXVII. Effect of solvent on the conformational energy of the carbethoxy group”, J. Org. Chem. (1970) 35, 3178–3181

    Article  CAS  Google Scholar 

  73. Perrin, C. L.; Armstrong, K. B., “Conformational analysis of glucopyranosylammonium ions: does the reverse anomeric effect exist?”, J. Am. Chem. Soc. (1993) 115, 6825–6834

    Article  CAS  Google Scholar 

  74. Isbell, H. S.; Frush, H. L., “Mutarotation, Hydrolysis, and Rearrangement Reactions of Glycosylamines”, J. Org. Chem. (1958) 23, 1309–1319

    Article  CAS  Google Scholar 

  75. Pinto, B. M.; Leung, Y. N., “The Anomeric Effect and Associated Stereoelectronic Effects”, Thatcher, G. R. J., Ed. ACS Symposium Series No. 539, 126–155, ACS, Washington, DC, 1993

    Chapter  Google Scholar 

  76. Cramer, C. J., “Anomeric and reverse anomeric effects in the gas phase and aqueous solution”, J. Org. Chem. (1992) 57, 7034–7043

    Article  CAS  Google Scholar 

  77. Salzner, U; Schleyer, P. v. R., “Ab initio examination of anomeric effects in Tetra-hydropyrans, 1,3-Dioxanes, and Glucose”, J. Org. Chem. (1994) 59, 2138–2155

    Article  Google Scholar 

  78. Chan, S. S. C.; Szarek, W. A.; Thatcher, G. R. J., “The reverse anomeric effect in N-pyranosylimidazolides: a molecular orbital study”, J. Chem. Soc. Perkin Trans. 2, (1995) 45–60

    Google Scholar 

  79. Vaino, A. R.; S. S. C. Chan; Szarek, W. A.; Thatcher, G. R. J., “An experimental re-examination of the reverse anomeric effect in N-Glycosylimidazoles”, J. Org. Chem. (1996) 61, 4514–4515

    Article  CAS  Google Scholar 

  80. Fabian, M. A.; Perrin, C. L.; Sinnott, M. L., “Absence of reverse anomeric effect: Conformational analysis of Glucosylimidazolium and Glucosylimidazole” J. Am. Chem. Soc. (1994) 116, 8398–8399

    Article  CAS  Google Scholar 

  81. Juaristi, E.; Cuevas, G, “Recent studies of the anomeric effect”, Tetrahedron, (1992) 48, 5019–5087

    Article  CAS  Google Scholar 

  82. Mikolajczyk, M.; Graczyk, P.; Wieczorek, M. W.; Bujacz, G “Conformational preference of 2-Triphenylphosphonio-1,3-Dithianes: Competition between steric and anomeric effects”, Angew. Chem. Int. Ed. Engl.(1991) 30, 578–580

    Article  Google Scholar 

  83. Graczyk, P. P.; Mikolajczyk, M.; Phosphorus, Sulfur Silicon Relat. Elem. (1993) 78, 313

    Google Scholar 

  84. Juaristi, E.; Cuevas, G., “Conformational analysis of 1,3-dithian-2-yltrimethylphosphonium chloride. Origin of the S-C-P anomeric effect”, J. Am. Chem. Soc. (1993) 115, 1313– 1316

    Article  CAS  Google Scholar 

  85. Thibaudeau, C.; Plavec, J.; Watanabe, K. A.; Chattopadhyaya, J., “How do the aglycons drive the pseudorotational equilibrium of the pentofuranose moiety in C-nucleosides?”, J. Chem Soc., Chem. Commun. (1994) 537–540

    Google Scholar 

  86. Jones, P. G.; Komarov, I. V.; Wothers, P. D.,“A test for the reverse anomeric effect”, Chem. Commun., 1998, 1695–1696

    Google Scholar 

  87. Kennedy, J.; Wu, J.; Drew, K.; Carmichael, I.; Serianni, A. S., “Carbohydrate reaction intermediates: Effect of ring-oxygen protonation on the structure and conformation of Aldofuranosyl rings”, J. Am. Chem. Soc. (1997) 119, 8933–8945

    Article  CAS  Google Scholar 

  88. Alder, R. W.; Carniero, T. M. G.; Mowlam, R. W.; Orpen, A. G.; Petillo, P. A.; Vachon, D. J.; Weisman, G. R.; White, J. M., “Evidence for hydrogen-bond enhanced structural anomeric effects from the protonation of two aminals, 5-methyl-1,5,9-triazabicyclo[7.3.1]tridecane and 1,4,8,11-tetraazatricyclo[9.3.1.14,8]hexadecane”, J. Chem. Soc., Perkin Trans. 2 (1999) 589–599

    Google Scholar 

  89. Cramer, C. J., “Hyperconjugation as it affects conformational analysis”, J. Mol. Struct. (THEOCHEM) (1996) 370, 135–146

    Article  CAS  Google Scholar 

  90. Ganguly, B.; Fuchs, B., “Stereoelectronic Effects in Negatively and Positively (Protonated) Charged Species. Ab Initio Studies of the Anomeric Effect in 1,3-Dioxa Systems”, J. Org. Chem.(1997) 62, 8892–8901

    Article  CAS  Google Scholar 

  91. Cloran, F.; Zhu, Y.; Osborn, J.; Carmichael, I.; Serianni, A. S., “2-Deoxy-D- ribofuranosylamine: Quantum mechanical calculations of molecular structure and NMR spin–spin coupling constants in nitrogen-containing Saccharides”, J. Am. Chem. Soc. (2000) 122, 6435–6448

    Article  CAS  Google Scholar 

  92. Randell, K. D.; Johnston, B. D.; Green, D. F.; Pinto, B. M., “Is there a generalized reverse anomeric effect? Substituent and solvent effects on the configurational equilibria of neutral and protonated N-Arylglucopyranosylamines and N-Aryl-5- thioglucopyranosylamines”, J. Org. Chem. (2000) 65, 220–226

    Article  CAS  Google Scholar 

  93. Guthrie, J. P., “Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units”, Can. J. Chem. (1978) 56, 2342–2354

    Article  CAS  Google Scholar 

  94. Booth, H.; Lemieux, R. U., “Anomeric effect: the conformational equilibriums of tetrahydro-1,3-oxazines and 1-methyl-1,3-diazane” Can. J. Chem. (1971) 49, 777–788

    Article  CAS  Google Scholar 

  95. Allingham, Y.; Cookson, R. C.; Crabb, T. A.; Vary, S., “The NMR spectra and conformations of some tetrahydro-1, 3-oxazines”, Tetrahedron (1968) 24, 4625–4630

    Article  CAS  Google Scholar 

  96. Allingham, Y.; Cookson, R. C.; Crabb, T. A.; Vary, S., “The NMR spectra and conformations of some tetrahydro-1, 3-oxazines”, Tetrahedron (1968) 24, 4625–4630

    Article  CAS  Google Scholar 

  97. Booth, H.; Khedhair, K. A., “Endo-anomeric and exo-anomeric effects in 2-substituted tetrahydropyrans”, J. Chem. Soc., Chem. Commun. (1985) 467–468

    Google Scholar 

  98. Kirby, A. J.; Wothers, P. D., “Conformational equilibria involving 2-amino-1, 3-dioxanes: steric control of the anomeric effect”, ARKIVOC (2001) XII, 58–71

    Google Scholar 

  99. Booth, H.; Readshaw, S. A., “Experimental studies of the anomeric effect. Part IV. Conformational equilibria due to ring inversion in tetrahydropyrans substituted at position 2 by the groups ethoxy, 2'-fluoroethoxy, 2,'2'-difluoroethoxy, and 2',2',2'-trifluoroethoxy”, Tetrahedron (1990) 46, 2097–2110

    Article  CAS  Google Scholar 

  100. Booth, H.; Khedhair, K. A.; Readshaw, S. A., “Experimental studies of the anomeric effect. I. 2-Substituted tetrahydropyrans”, Tetrahedron (1987), 43(20), 4699–4723

    Article  CAS  Google Scholar 

  101. Kilpatrick, J. E.; Pitzer, K. S.; Spitzer, R., “The thermodynamics and molecular structure of cyclopentane”, J. Am. C hem. Soc. (1947) 69, 2483–2488

    Article  CAS  Google Scholar 

  102. Plavec, J.; Tong, W.; Chattopadhyaya, J., “How do the gauche and anomeric effects drive the pseudorotational equilibrium of the pentofuranose moiety of nucleosides?”, J. Am. Chem. Soc. (1993) 115, 9734–9746

    Article  CAS  Google Scholar 

  103. Plavec, J.; Garg, N.; Chattopadhyaya, J., “How does the steric effect drive the sugar conformation in the 3-C-branched nucleosides?”, J. Chem. Soc. Chem. Commun. (1993), 1011–1014

    Google Scholar 

  104. Plavec, J.; Koole, L. H.; Chattopadhyaya, J., “Structural analysis of 2',3'-dideoxyinosine, 2',3'-dideoxyadenosine, 2',3'-dideoxyguanosine, and 2',3'-dideoxycytidine by 500-MHz proton-NMR spectroscopy and ab-initio molecular orbital calculations”, J. Biochem. Biophys. Methods (1992) 25, 253–272

    Article  CAS  Google Scholar 

  105. Altona, C.; Sundaralingam, M., “Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation”, J. Am. Chem. Soc. (1972) 94, 8205–8212

    Article  CAS  Google Scholar 

  106. Altona, C.; Sundaralingam, M., “Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants”, J. Am. Chem. Soc. (1973) 95, 2333–2344

    Article  CAS  Google Scholar 

  107. Saenger, W., “Principles of Nucleic Acid Structure”, Springer-Verlag, Berlin, 1988

    Google Scholar 

  108. Olson, W. K.; Sussman, J. L., “How flexible is the furanose ring? 1. A comparison of experimental and theoretical studies”, J. Am. Chem. Soc. (1982) 104, 270–278

    Article  CAS  Google Scholar 

  109. Olson, W. K., “How flexible is the furanose ring? 2. An updated potential energy estimate”, J. Am. Chem. Soc. (1982) 104, 278–286

    Article  CAS  Google Scholar 

  110. Plavec, J.; Tong, W.; Chattopadhyaya, J., “How do the gauche and anomeric effects drive the pseudorotational equilibrium of the pentofuranose moiety of nucleosides?”, J. Am. Chem. Soc. (1993) 115, 9734–9746

    Article  CAS  Google Scholar 

  111. Plavec, J.; Thibaudeau, C.; Chattopadhyaya, J., “How do the energetics of the stereoelectronic gauche and anomeric effects modulate the conformation of nucleos(t)ides”, Pure. Appl. Chem. (1996) 68, 2137–2144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momčilo Miljković .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miljković, M. (2010). Anomeric Effect. In: Carbohydrates. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92265-2_3

Download citation

Publish with us

Policies and ethics