Skip to main content

Hyperchloremic Metabolic Acidosis: More than Just a Simple Dilutional Effect

  • Conference paper
Intensive Care Medicine
  • 1388 Accesses

Abstract

Fluid resuscitation lies at the heart of acute care medicine. Despite the central role occupied by plasma volume expansion therapeutics, there remains little consensus regarding the ideal fluid for plasma volume expansion. However, the unintended consequences of excessive plasma volume expansion as well as those untoward events directly ascribed to the prescribed fluids have come to the fore. Anasarca, pulmonary edema, myocardial stress, acute lung injury (ALI), acute kidney injury, as well as the secondary abdominal compartment syndrome have all been described as unintended consequences of plasma volume expansion following critical illness or injury [13]. It is important to note that these events occur with both crystalloid and colloid therapy, although at different rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maerz L, Kaplan LJ (2008) Abdominal compartment syndrome. Crit Care Med 36 (Suppl 4): S212–215

    Article  PubMed  Google Scholar 

  2. Cope DK, Grimbert F, Downey JM, Taylor AE (1992) Pulmonary capillary pressure: a review. Crit Care Med 20: 1043–1056

    Article  CAS  PubMed  Google Scholar 

  3. Kalra PR, Anagnostopoulos C, Bolger AP, Coats AJ, Anker SD (2002) The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol 39: 1901–1908

    Article  PubMed  Google Scholar 

  4. Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90: 1265–1270

    Article  CAS  PubMed  Google Scholar 

  5. Healey MA, Davis RE, Liu FC, Loomis WH, Hoyt DB (1998) Lactated ringer’s is superior to normal saline in a model of massive hemorrhage and resuscitation. J Trauma 45: 894–899

    Article  CAS  PubMed  Google Scholar 

  6. Kaplan LJ, Bailey H, Kellum JA (1999) The etiology and significance of metabolic acidosis in trauma patients. Curr Opin Crit Care 5: 458–463

    Article  Google Scholar 

  7. Stewart PA (1981) How to Understand Acid-base. A Quantitative Acid-base Primer for Biology and Medicine. Elsevier, New York

    Google Scholar 

  8. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61: 1444–1461

    CAS  PubMed  Google Scholar 

  9. Kellum JA (2000) Determinants of blood pH in health and disease. Crit Care 4: 6–14

    Article  CAS  PubMed  Google Scholar 

  10. Wooten EW (2004) Science review: Quantitative acid-base physiology using the Stewart model. Crit Care 8: 448–452

    Article  PubMed  Google Scholar 

  11. Morgan TJ (2005) Clinical review: The meaning of acid-base abnormalities in the intensive care unit — effects of fluid administration. Crit Care 9: 204–211

    Article  PubMed  Google Scholar 

  12. Kaplan LJ, Kellum JA (2008) Comparison of acid-base models for prediction of hospital mortality after trauma. Shock 29: 662–666

    Article  CAS  PubMed  Google Scholar 

  13. Kellum JA, Pinsky MR (2002) Use of vasopressor agents in critically ill patients. Curr Opin Crit Care 8: 236–241

    Article  PubMed  Google Scholar 

  14. Kaplan LJ, Philbin N, Arnaud F, Rice J, Dong F, Freilich D (2006) Resuscitation from hemorrhagic shock: fluid selection and infusion strategy drives unmeasured ion genesis. J Trauma 61: 90–97

    Article  PubMed  Google Scholar 

  15. Kellum JA (2003) Closing the gap on unmeasured anions. Crit Care 7: 219–220

    Article  PubMed  Google Scholar 

  16. Moviat M, van Haren F, van der Hoeven H (2003) Conventional or pysiochemical approach in intensive care unit patients with meatabolic acidosis. Crit Care 7:R41–R45

    Article  PubMed  Google Scholar 

  17. Kellum JA, Kramer DJ, Pinsky MR (1995) Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 10: 51–55

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan LK, Kellum JA (2007) Acid-base disorders. In: Wilson W, Grande CM, Hoyt DB. Anesthesia, Trauma, and Intensive Care, 1st Edition. Informa Healthcare, New York, pp 793–810

    Google Scholar 

  19. Siggaard-Andersen O (1977) The Van Slyke equation. Scand J Clin Lab Invest Suppl 146: 15–20

    Article  Google Scholar 

  20. Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anesth Scand Suppl 107: 123–128

    Article  CAS  Google Scholar 

  21. Brill SA, Stewart TR, Brundage SI, Schreiber MA (2002) Base deficit does not predict mortality when secondary to hyperchloremic acidosis. Shock 17: 459–462

    Article  PubMed  Google Scholar 

  22. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  CAS  PubMed  Google Scholar 

  23. Eberhard LW, Morabito DJ, Matthay MA, et al (2000) Initial severity of metabolic acidosis predicts the development of acute lung injury in severely traumatized patients. Crit Care Med 28: 125–131

    Article  CAS  PubMed  Google Scholar 

  24. dos Santos CC, Slutsky AS (2006) The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol 68: 585–618

    Article  PubMed  Google Scholar 

  25. Habashi NM (2005) Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med 33 (Suppl 3):S228–240

    Article  PubMed  Google Scholar 

  26. Haque IU, Huang CJ, Scumpia PO, Nasiroglu O, Skimming JW (2003) Intravascular infusion of acid promotes intrapulmonary inducible nitric oxide synthase activity and impairs blood oxygenation in rats. Crit Care Med 31: 1454–1460

    Article  CAS  PubMed  Google Scholar 

  27. Eddy VA, Morris JA Jr, Cullinane DC (2000) Hypothermia, coagulopathy, and acidosis. Surg Clin North Am 80: 845–854

    Article  CAS  PubMed  Google Scholar 

  28. Schreiber MA (2005) Coagulopathy in the trauma patient. Curr Opin Crit Care 11: 590–597

    Article  PubMed  Google Scholar 

  29. Martini WZ, Pusateri AE, Uscilowicz JM, Delgado AV, Holcomb JB (2005) Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma 58: 1002–1009

    Article  PubMed  Google Scholar 

  30. Holcomb JB, Jenkins D, Rhee P, et al (2007) Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma 62: 307–310

    Article  PubMed  Google Scholar 

  31. Johnston TD, Chen Y, Reed RL 2nd (1994) Functional equivalence of hypothermia to specific clotting factor deficiencies. J Trauma 37: 413–417

    Article  CAS  PubMed  Google Scholar 

  32. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR (2001) Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 93: 817–822

    Article  CAS  PubMed  Google Scholar 

  33. Cammarata GA, Weil MH, Castillo CJ, et al (2009) Buccal capnometry for quantitating the severity of hemorrhagic shock. Shock (in press)

    Google Scholar 

  34. Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118: 1127–1132

    Article  CAS  PubMed  Google Scholar 

  35. Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27: 1225–1229

    Article  CAS  PubMed  Google Scholar 

  36. Lang K, Boldt J, Suttner S, Haisch G (2001) Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 93: 405–409

    Article  CAS  PubMed  Google Scholar 

  37. Reinhart WH, Gaudenz R, Walter R (2002) Acidosis induced by lactate, pyruvate, or HCl increases blood viscosity. J Crit Care 17: 68–73

    Article  CAS  PubMed  Google Scholar 

  38. Hansen J, Skalak R, Chien S, Hoger A (1997) Spectrin properties and the elasticity of the red blood cell membrane skeleton. Biorheology 34: 327–348

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Lykotrafitis G, Dao M, Suresh S (2007) Cytoskeletal dynamics of human erythrocyte. Proc Natl Acad Sci USA 104: 4937–4942

    Article  CAS  PubMed  Google Scholar 

  40. Kaplan LJ, Bellows CF, Blum H, Mitchell M, Whitman GJ (1994) Ischemic preconditioning preserves end-ischemic ATP, enhancing functional recovery and coronary flow during reperfusion. J Surg Res 57: 179–184

    Article  CAS  PubMed  Google Scholar 

  41. Kaplan LJ, Blum H, Bellows CF, Banerjee A, Whitman GJ (1996) Reversible injury: creatinine kinase recovery restores bioenergetics and function. J Surg Res 62: 103–108

    Article  CAS  PubMed  Google Scholar 

  42. Seal JB, Gewertz BL (2005) Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 19: 572–584

    Article  PubMed  Google Scholar 

  43. Cicha I, Suzuki Y, Tateishi N, Maeda N (2003) Changes of RBC aggregation in oxygenationdeoxygenation: pH dependency and cell morphology. Am J Physiol Heart Circ Physiol 284: H2335–2342

    CAS  PubMed  Google Scholar 

  44. Chiara O, Pelosi P, Segala M, et al (2001) Mesenteric and renal oxygen transport during hemorrhage and reperfusion: evaluation of optimal goals for resuscitation. J Trauma 51: 356–362

    Article  CAS  PubMed  Google Scholar 

  45. Kaplan LJ, Bellows CF, Carter S, Blum H, Whitman GJ (1995) The phosphocreatine overshoot occurs independent of myocardial work. Biochimie 77: 245–248

    Article  CAS  PubMed  Google Scholar 

  46. Benesch RE, Rubin H (1975) Interaction of hemoglobin with three ligans: organic phosphates and the Bohr effect. Proc Natl Acad Sci USA 72: 2465–2467

    Article  CAS  PubMed  Google Scholar 

  47. Giovannini I, Chiarla C, Boldrini G, Terzi R (1999) Quantitative assessment of changes in blood CO(2) tension mediated by the haldane effect. J Appl Physiol 87: 862–866

    CAS  PubMed  Google Scholar 

  48. Prange HD, Schumaker Jr JL, Westen EA, Horstkotte DG, Pinshow B (2001) Physiological consequences of oxygen-dependent chloride binding to hemoglobin. J Appl Physiol 91: 33–38

    CAS  PubMed  Google Scholar 

  49. Rhee P, Wang D, Ruff P, et al (2000) Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 28: 74–78

    Article  CAS  PubMed  Google Scholar 

  50. Kellum JA, Song M, Venkataraman R (2004) Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest 125: 243–248

    Article  CAS  PubMed  Google Scholar 

  51. Kellum JA, Song M, Li J (2004) Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol Regul Integr Comp Physiol 286:R686–692

    CAS  PubMed  Google Scholar 

  52. Kellum JA (2002) Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med 30: 300–305

    Article  PubMed  Google Scholar 

  53. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J (1993) Lactate clearance and survival following injury. J Trauma 35: 584–589

    Article  CAS  PubMed  Google Scholar 

  54. Gunnerson KJ, Saul M, He S, Kellum JA (2006) Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care 10:R22

    Article  PubMed  Google Scholar 

  55. Gunnerson KJ, Kaplan JA (2003) Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care 9: 468–473

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdel-Razeq, S.S., Kaplan, L.J. (2009). Hyperchloremic Metabolic Acidosis: More than Just a Simple Dilutional Effect. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92278-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92278-2_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92277-5

  • Online ISBN: 978-0-387-92278-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics