Skip to main content

Enzymology of Plant Cell Wall Breakdown: An Update

  • Chapter
  • First Online:
Routes to Cellulosic Ethanol

Abstract

Vast quantities of lignocellulosic material are available for exploitation as potential source of food and biofuel. Lignocellulose structure is degraded by an arsenal of enzyme systems that works synergically. Basically, two enzyme types are responsible for the efficient degradation of lignocelluloses: hydrolytic enzyme system, which degrades the holocellulose structure and oxidative enzyme system, which acts on lignin and open phenyl rings. For a variety of reasons, enzymatic conversion of lignocellulose is preferred over chemical conversion procedures. This chapter shows a comprehensive picture of the main enzymes involved in lignocellulose breaking down.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, E. L., Kroon, P. A., Williamson, G., Gilbert, H. J., and Morrisa, V. J. 2004. Inactivated enzymes as probes of the structure of arabinoxylans as observed by atomic force microscopy. Carbohydr. Res. 339: 579–590.

    Article  CAS  PubMed  Google Scholar 

  • Akin, D. E., Gordon, G. L. R., and Hogan, J. P. 1983. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Appl. Environ. Microbiol. 46: 738–748.

    CAS  PubMed  Google Scholar 

  • Arai, T., Araki, R., Tanaka, A., Karita, S., Kimura, T., Sakka, K. and Ohmya, K. 2003. Characterization of a cellulase containing a family 30 carbohydrate-binding module (CBM) derived from Clostridium thermocellum CelJ: importance of the CBM to cellulose hydrolysis. J. Bacteriol. 185: 504–512.

    Article  CAS  PubMed  Google Scholar 

  • Bacic, Q., Harris, P. J., and Stone, B. A. 1988. Structure and function of plant cell walls. In The Biochemistry of plants, vol.14, ed. J. Preiss, pp. 297–371. San Diego: Academic Press.

    Google Scholar 

  • Baminger, U., Subramaniam, S. S., Renganathan, V., and Haltrich, D. 2001. Characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. App. Environ. Microbiol. 67 (4): 1766–1774.

    Article  CAS  Google Scholar 

  • Bao, W., O’Malley, D. M., Whetten, R., and Sederoff, R. R. 1993. A laccase associated with lignifications in loblolly pine xylem. Science 260: 672–674.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, M. J., Eklo, J. M., Michel, G., Kallas, A. M., Teeri, T. T., Czjzek, M., and Brumer III, H. 2007. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell 19: 1947–1963.

    Article  CAS  PubMed  Google Scholar 

  • Beldman, G., Schols, H. A, Pitson, S. M., Searl-van Leeuwen, M. J. F., and Voragen, A. G. J. 1997. Arabinans and arabinan degrading enzymes. Adv. Macromol. Carbohydr. Res. 1: 1–64.

    CAS  Google Scholar 

  • Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Meessen, L., Sigoillot, J.C., Asther, M., and Asther, M., 2006. Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr. Res. 341: 1820–1827.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 35–383.

    Article  Google Scholar 

  • Biely, P., Vrsanská, M., Tenkanen, M., and Kluepfel, D. 1997. Endo-β-1, 4-xylanase families: differences in catalytic proprieties. J. Biotechnol. 57: 151–166.

    Article  CAS  PubMed  Google Scholar 

  • Blum, D. L., Kataeva, I. A., Li, X. L., and Ljugdahl, L. G. 2000. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol. 182: 1346–1351.

    Article  CAS  PubMed  Google Scholar 

  • Bonomo, R. P., Cennamo, G., Purrello, R., Santoro, A. M., and Zappala, R. 2001. Comparison of three fungal laccases from Rigodoporus lignosus and Pleurotus astreatus: correlation between conformational changes and catalytic activity. J. Inorg. Chem. 83: 67–73.

    CAS  Google Scholar 

  • Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E., and Ljungdahl, L.G. 1990. Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotechnol. 33: 345–351.

    Article  CAS  Google Scholar 

  • Borneman, W. S., Ljungdahl, L. G., Hartley, R. D., and Akin, D. E. 1991. Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl. Environ. Microbiol. 57: 2337–2344.

    CAS  PubMed  Google Scholar 

  • Borneman, W. S., Ljungdahl, L. G., Hartley, R. D., and Akin, D. E. 1992. Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl. Environ. Microbiol. 58: 3762–3766.

    CAS  PubMed  Google Scholar 

  • Brotman, Y., Briff, E., Viterbo, A., Chet, I. 2008. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiology 147: 779–784.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D. J. 2000. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38: 109–124.

    Article  CAS  PubMed  Google Scholar 

  • Coughlan, M. P. 1985. Cellulases: production, properties and applications. Biochem. Soc. Trans. 13: 405–406.

    CAS  PubMed  Google Scholar 

  • Coughlan, M. P. 1992. Towards an understanding of the mechanism of action of main chain cleaving xylnases. In Xylans and xylanases, eds J. Visser, J. G. Beldman, M. A. K. Someren, A. G. J. van Voragen, pp. 111–139. Amsterdam: Elsevier Science.

    Google Scholar 

  • Couglan, M. P., Tuohy, M. G., Filho, E. X. F., Puls, J., Claeyssens, M., Vrsanská, M., and Hughes, M. M. 1993. Ezymological aspects of microbial hemicellulases with emphasis on fungal systems. In: Hemicellulose and hemicellulases, eds M. P. Coughlan, G. P. Hazlewood, pp. 53–83. London: Portland

    Google Scholar 

  • Crépin, V. F., Faulds, C. B., and Connerton, I. F. 2004. Functional recognition of new classes of feruloyl esterase. Appl. Microbiol. Biotechnol. 63: 647–652.

    Article  PubMed  CAS  Google Scholar 

  • de Marco, A. and Roubelakis-Angelakis, K. A. 1997. Laccase activity could contribute to cell-wall reconstitution of regenerating protoplasts. Phytochem. 46: 421–425.

    Article  Google Scholar 

  • de Vries, R. P. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes, relevance for industrial production. Appl. Micorbiol. Biotechnol. 61: 10–20.

    Google Scholar 

  • de Vries, R. P., and Visser, J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497–522.

    Article  PubMed  Google Scholar 

  • de Vries, R. P., van Kuyk, P. A., Kester, H. C. M., and Visser, J. 2002. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J. 363: 377–386.

    Article  PubMed  Google Scholar 

  • de Wet, B. J. M., Matthew, M. K. A., Storbeck, K-H., van Zyl, W. H., and Prior, B. A. 2008. Characterization of a family 54 α-L-arabinofuranosidase from Aureobasidium pullulans. Appl. Microbiol. Biotechnol. 77: 975–983.

    Article  PubMed  CAS  Google Scholar 

  • Eggert, C., Temp, U., Dean, J. F. D., Eriksson, K. E. L. 1996. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391: 144–148.

    Article  CAS  PubMed  Google Scholar 

  • Faulds, C. B., Ralet, M. C., Williamson, G., Hazlewood, G. P., and Gilbert, H. J. 1995. Specificity of an esterase (XYLD) from Pseudomonas fluorescens subsp. Cellulose. Biochim. Biophys. Acta 1243: 265–269.

    Google Scholar 

  • Faulds, C. B., Molina, R., Gonzalez, R., Husband, F., Juge, N., Sanz-Aparicio, J., and Hermoso. J. A. 2005. Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS J. 272: 4362–4371.

    Article  CAS  PubMed  Google Scholar 

  • Filho, E. X. F. Hemicellulases and biotechnology. 1998. In Recent research developments in microbiology, ed. S. G. Pandalai, pp. 165–176. Trivandrum: Research Signpost.

    Google Scholar 

  • Fry, S. C. 2003. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New phytologist. 161: 641–675.

    Article  Google Scholar 

  • Gerber, P. J., Heitmann, J. A., Joyce, T. W. Buchert, J., and Siika-aho, M. 1999. Adsorption of hemicellulases onto bleached kraft fibers. J. Biotechnol. 67: 67–75.

    Article  CAS  Google Scholar 

  • Gielkens, M. M. C., Dekkers, E., Visser, J., and de Graaff, L. H. 1999. Two cellobiohydrolases-encoding genes from Aspergillus niger require D-xylose and the xylanolitic transcriptional activator XlnR for their expression. Appl. Environ. Microbiol. 65: 4340–4345.

    CAS  PubMed  Google Scholar 

  • Gübitz, G. M., Hayn, M., Sommerauer, M., and Steiner, W. 1996. Mannan-degrading enzymes from Sclerotium rolfsii: Characterization and synergism of two endo β-mannanase and a β-mannosidase. Biores. Technol. 58: 127–135.

    Article  Google Scholar 

  • Hartley, R. D., and Ford, C. W. 1989. Phenolic constituents of plant cell walls and wall biodegradability. In Plant cell wall polymers: biogenesis and biodegradation, eds. N. G. Lewis, M. G. Paice, pp. 137–145. Washington: American Chemical Society.

    Chapter  Google Scholar 

  • Hartley, R. D., Morrison, W. H., Himmelsbach, D. S., and Borneman, W. S. 1990. Cross-linking of cell wall arabinoxylans in graminaceous plants. Phytochem. 12: 3705–3709.

    Article  Google Scholar 

  • Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.

    CAS  PubMed  Google Scholar 

  • Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781–788.

    CAS  PubMed  Google Scholar 

  • Hespell, R. B., and O’Bryan, P. J. 1992. Purification and characterization of an α-L-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl. Environ. Microbiol. 58: 1082–1108.

    CAS  PubMed  Google Scholar 

  • Himmel, M. E., Ruth, M. F., and Wyman, C. E. 1999. Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotechnol. 10: 358–364.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, T. 1991. Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr. Res. 219: 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Jayani, R. S., Saxena, S., and Gupta, R. 2005. Microbial pectinolytic enzymes: A review. Process Biochem. 40: 2931–2944.

    Article  CAS  Google Scholar 

  • Jorgensen, H., Morkeberg, A., Krogh, K. B. R., and Olsson, L. 2005. Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microbiol. Technol. 36: 42–48.

    Article  CAS  Google Scholar 

  • Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., and Viikari, L. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40: 3519–3525.

    Article  CAS  Google Scholar 

  • Karkehabadi, S., Hansson, H., Piens, K., Mitchinson, C., and Sandgren, M. 2008. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J. Mol. Biol. 383: 144–154.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, J., Saloheimo, M., Siika-aho, M., Tenkanen, M., Penttilä, M., Tjerneld, F. (2001). Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur. J. Biochem. 268: 6498–6507.

    Article  CAS  PubMed  Google Scholar 

  • Kashyap, D. R., Vohra, P. K., Chopra, S., Tewari, R. 2001. Applications of pectinase in the commercial sector: a review. Biores. Technol. 77: 215–227.

    Article  CAS  Google Scholar 

  • Kirk, O., Borchet, T. V., Fuglsang, C. C. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Koseki, T., Mese, Y., Fushinobu, S., Masaki, K., Fujii, T., Ito, K., Shiono, Y., Murayama, T., and Iefuji, H. 2008. Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl. Microbiol. Biotechnol. 77: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  • Kroon, P. A., Faulds, C. B., Brézillon, C., and Williamson, G. 1997. Methyl phenylalkanoates as substrates to probe the active sites of esterases. Eur. J. Biochem. 248: 245–251.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Singh, S., Singh, O. V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377–391.

    Article  CAS  PubMed  Google Scholar 

  • Lawford, H. G., and Rousseau, J. D. 2003. Cellulosic fuel ethanol – alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis. Appl. Biochem. Biotechnol. 106: 457–469.

    Article  Google Scholar 

  • Lee, C. C., Wagschal, K., Kibblewhite-Accinelli, R. E., Orts, W. J., Robertson, G. H., Wong, D. W. S. 2008. An α-glucuronidase enzyme activity assay adaptable for solid phase screening. Appl. Biochem. Biotechnol. 155: 314–320.

    PubMed  Google Scholar 

  • Levasseur, A., Saloheimo, M., Navarro, D., Andberg, M., Monot, F., Nakari-Setälä, T., Asther, M., and Record, E. 2006. Production of a chimeric enzyme tool associating the Trichoderma reesei swollenin with the Aspergillus niger feruloyl esterase A for release of ferulic acid. Appl. Microbiol. Biotechnol. 73: 872–880.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K., Yan, L., Yao, G., and Guo, X. 2006. Estimation of p-coumaric acid as a metabolite of E-6-O-p-coumaroyl scandoside methyl ester in rat plasma by HPLC and its application to a pharmacokinetic study. J. Chrom. B 831: 303–306.

    Article  CAS  Google Scholar 

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H., Pretorius, I. S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577.

    Article  CAS  PubMed  Google Scholar 

  • Mach, R. L., and Zeilinger, S. 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60: 515–522.

    CAS  PubMed  Google Scholar 

  • Magalhães, P., Milagres, A. M. F. 2009. Biochemical properties of a β-mannanase and a b-xylanase produced by Ceriporiopsis subvermispora during biopulping conditions. Int. Biodeterior. Biodegradation 63: 191–195.

    Google Scholar 

  • Mandels, M. 1985. Applications of cellulases. Biochem. Soc. Trans. 13: 414–415.

    CAS  PubMed  Google Scholar 

  • Manfield, S. D., de Jong, E., and Saddler, J. N. 1997. Cellobiose Dehydrogenase, an Active Agent in Cellulose Depolymerization. App. Environ. Microbiol. 63(10): 3804–3809.

    Google Scholar 

  • Mayer, A. M., and Staples, R. C. 2002. Laccase: new functions for an old enzyme. Phytochem. 60: 551–565.

    Article  CAS  Google Scholar 

  • Medeiros, R. G., Silva Jr, F. G., Salles, B. C., Estelles, R. S., and Filho, E. X. F. 2002. The performance of fungal xylan-degrading enzyme preparations in elemental chlorine-free bleaching for Eucalyptus pulp. J. Ind. Microbiol. Biotechnol. 28: 204–206.

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt, A., and Huber, R. 1990. The blue copper oxidases, ascorbate oxidase, laccase and ceruloplasmin: modeling and structural relationships. Eur. J. Biochem. 187: 341–352.

    Article  CAS  PubMed  Google Scholar 

  • Minic, Z., and Jouanin, L. 2006. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 44: 435–449.

    Article  CAS  PubMed  Google Scholar 

  • Miyanaga, A., Koseki, T., Matsuzawa, H., Wakagi, T., Shoun, H., and Fushinobu, S. 2004. Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J. Biol. Chem. 279: 44907–44914.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, L. R. S., and Filho, E. X. F. 2008. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 79(2): 165–178.

    Article  CAS  PubMed  Google Scholar 

  • Mosier N., Hall, P., Ladisch, C. M., and Ladisch, M. R. 1999. Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. Adv. Biochem. Eng. Biotechnol. 65: 23–39.

    CAS  PubMed  Google Scholar 

  • Numan, M. T., and Bhosle, N. B. 2006. α-L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247–260.

    Article  CAS  PubMed  Google Scholar 

  • O’Malley, D. M., Whetten, R., Bao, W., Chen, C, and Sederoff, R. R. 1993. The role of laccase in lignifications. The Plant J. 4(5): 751–757.

    Article  Google Scholar 

  • Pérez, J., Muñoz-Dorado, J., de La Rubia, T., and Martínez, J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Pezet, R., Pont, V., and Hoang-Van, K. 1992. Enzymatic detoxication of stilbenes by Botrytis cinerea and inhibition by grape berries proanthrocyanidins. In Recent Advances in Botrytis Research, eds K. Verhoeff, N. E. Malathrakis, B. Williamson, pp. 87–92. Wageningen: Pudoc Scientific.

    Google Scholar 

  • Picart, P., Diaz, P., and Pastor, F. I. J. 2007. Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Lett. Appl. Micobiol. 45: 108–113.

    Article  CAS  Google Scholar 

  • Polizeli, M. L. T., Rizzatti, A. C. S., Monti R., Terenzi, H. F., Jorge, J. A., and Amorim, D. S. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.

    Article  CAS  PubMed  Google Scholar 

  • Radford, A. 2006. Glycosyl hydrolase genes and enzymes of Neurospora crassa. Fungal Gen. Newsletter 53: 12–14.

    Google Scholar 

  • Raguz, S., Yague, E., Wood, D. A., Thurston, C. F. 1992. Isolation and characterisation of a cellulose-growth-specific gene from Agaricus bisporus. Gene (Amst.) 119: 183–190.

    CAS  Google Scholar 

  • Rahman, S. A. K. M., Kato, K., Kawai, S., and Takamizawa, K. 2003. Substrate specificity of the α-L-arabinofuranosidase from Rhizomucor pusillus HHT-1. Carbohydr. Res. 338: 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  • Ralph J., Grabber, J. H., Hatfield, R. D. 1995. Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharides esters into ryegrass lignins. Carbohydr. Res. 275: 167–178.

    Article  CAS  Google Scholar 

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., and Boerjan, W. 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3: 29–60.

    Article  CAS  Google Scholar 

  • Reese, E. T. 1976. History of cellulose program at the US Army Natick development centre. Biotechnol. Bioeng. Symp. 6: 9–20.

    CAS  PubMed  Google Scholar 

  • Rose, J. K., Braan, J., Fry, S. C., and Nishitani, K. 2002. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43: 1421–1435.

    Article  CAS  PubMed  Google Scholar 

  • Rye, C. S., and Withers, S. G. 2000. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4: 573–580.

    Article  CAS  PubMed  Google Scholar 

  • Saha, B. C. 2000. α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotech. Adv. 18: 403–423.

    Article  CAS  Google Scholar 

  • Saha, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279–291.

    Article  CAS  PubMed  Google Scholar 

  • Saha, B. C., and Bothast, R. J. 1998. Purification and characterization of a novel thermostable α-L-arabinofuranosidase from a color-variant strain of a Aureobasidium pullulans. Appl. Environ. Microbiol. 64: 216–220.

    CAS  PubMed  Google Scholar 

  • Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M., and Penttilä, M. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269: 4202–4211.

    Article  CAS  PubMed  Google Scholar 

  • Saloheiomo, M., Nakari-Setala, T., Tenaken, M., and Penttila, M. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249: 584–591.

    Article  Google Scholar 

  • Saulnier, L., and Thibault, J. F. 1999. Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans J. Sci. Food Agric. 79: 396–402.

    Article  CAS  Google Scholar 

  • Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E., and Rolando, C. 1985. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochem. 24: 1359–1362.

    Article  CAS  Google Scholar 

  • Shallom, D., Belakhov, V., Solomon, D., Gilead-Gropper, S., Baasov, T., Shoham, G., and Shohama, Y. 2002. The identification of the acid-base catalyst of α-arabinofuranosidase from Geobacillus stearothermopuhilus T-6, a family 51 glycoside hydrolase. FEBS Lett. 514: 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Siqueira, F.G.S. and Filho, E. X. F. 2010. Plant cell wall as substrate for production of enzymes with industrial applications. MROC 7: 54–60.

    Google Scholar 

  • Sohail, M., Siddiqi, R., Ahmad, A., and Khan, S. A. 2009. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol. 25: 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, E. I., and Lowery, M. D. 1993. Electronic structure contributions to function in bioinorganic chemistry. Science. 259: 1575–1581.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, H. R., Pedersen, S., Vikso-Nielsen, A., Meyer, A. S. 2005. Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzyme Microb. Technol. 36: 773–784.

    Article  CAS  Google Scholar 

  • Sozzi, G. O., Greve, L. C., Prody, G. A., and Labavitch, J. M. 2002. Gibberellic acid, synthetic auxins, and ethylene differentially modulate α-L-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase Tomato Pericarp. Discs. Plant Physiol. 129: 1330–1340.

    Article  CAS  Google Scholar 

  • Spagna, G., Andreani, F., Salatelli, E., Romagnoli, D., Casarini, D., and Pifferi, P. G. 1998. Immobilization of the glycosidases: α-L-arabinofuranosidase and β-D-glucopyranosidase from Aspergillus niger on a chitosan derivative to increase the aroma of wine. Part II. Enzyme Microb. Technol. 23: 413–421.

    Article  CAS  Google Scholar 

  • Tolan, J. S., and Foody, B. 1999. Cellulase from submerged fermentation. Adv. Biochem. Eng. Biotechnol. 65: 41–67.

    CAS  Google Scholar 

  • Topakas, E., Christakopoulos, P, and Faulds, C. B. 2005. Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J. Biotechnol. 115: 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Topakas, E.,Vafiadi, C., Christakopoulos, P. 2007. Microbial production, characterization and applications of feruloyl esterases. Proc. Biochem. 42: 497–509.

    Article  CAS  Google Scholar 

  • Turner, P., Mamo, G., Karlsson, E. N. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6: 1–23.

    Article  CAS  Google Scholar 

  • Uenojo, M., Pastore, G. M. 2007. Pectinases: aplicações industriais e perspectivas. Quim. Nova, 30: 388–394.

    CAS  Google Scholar 

  • Vafiadi, C., Topakas, E., Wong, K. K. Y., Suckling, I. D., and Christakopoulos, P. 2005. Mapping the hydrolytic and synthetic selectivity of a type c feruloyl esterase (StFaeC) from Sporotrichum thermophile using alkyl ferulates. Tetrahed. Asym. 16: 373–379.

    Article  CAS  Google Scholar 

  • Vafiadi, C., Topakas, E., Christakopoulos, P., and Faulds, C. B. 2006. The feruloyl esterase system of Talaromyces stipitatus: determining the hydrolytic and synthetic specificity of TsFaeC. J. Biotechnol. 125: 210–221.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, G., and Fry, S. C. 1999. Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds. Phytochem. 52: 769–773.

    Article  CAS  Google Scholar 

  • Ward, O. P., and Moo-Young, M. 1989. Degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237–274.

    Article  CAS  PubMed  Google Scholar 

  • Xu, B., Hägglund, P., Stålbrand, H., Janson, J. 2002. Endo-β-1,4-Mannanases from blue mussel, Mytilus edulis: purification, characterization, and mode of action. J. of Biotechnol. 92: 267–277.

    Article  CAS  Google Scholar 

  • Yao, Q., Sun, T., Liu, W., Chen, G. 2008. Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol. Biochem. 72: 2799–2805.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edivaldo X. F. Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moreira, L.R.S., Milanezi, N.v., Filho, E.X.F. (2011). Enzymology of Plant Cell Wall Breakdown: An Update. In: Buckeridge, M., Goldman, G. (eds) Routes to Cellulosic Ethanol. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92740-4_6

Download citation

Publish with us

Policies and ethics