Skip to main content

Electroless Deposition Approaching the Molecular Scale

  • Chapter
  • First Online:
Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications

Abstract

Electroless deposition (ELD) encompasses quite a range of chemical deposition processes at the solid/liquid interface. Here I focus exclusively on autocatalytic ELD of metals, i.e., the plated metal catalyzes its own deposition, and hence the process is continuous as long as sufficient amounts of reactants are provided [1–5]. Such a reaction requires a catalytic site to start; usually this is a noble metal nanoparticle, while for technical applications mixed metal particles are employed. Obviously, the size of the nanoparticle must be smaller than the desired metal structure. The theoretical limit for common electroless Cu plating baths is in the atomic range, and indeed clusters with two or four atoms may act as nuclei; the smallest electroless (EL) metal structures are in the range of 2 nm (corresponding to several hundred atoms) [6–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paunovic, M. and Schlesinger, M.: Fundamentals of electrochemical deposition. Wiley Interscience: New York (1998)

    Google Scholar 

  2. Mallory, G. O. and Hajdu, J. B.: Electroless Plating: Fundamentals and Applications. American Electroplaters and Surface Finishers Society: Orlando (1990)

    Google Scholar 

  3. O'Sullivan, E. J.: Fundamental and Practical Aspects of the Electroless Deposition Reaction. In Advances in Electrochemical Science and Engineering, Alkire, R. C.; Kolb, D. M., Eds. Wiley-VCH: Weinheim 7, 225 (2002)

    Google Scholar 

  4. Djokic, S. S.: Electroless Deposition of Metals and Alloys. In Modern Aspects of Electrochemistry, Conway, B. E.; White, R. E., Eds. Kluwer: New York, 35, 51 (2002)

    Google Scholar 

  5. Shacham-Diamand, Y.; Inberg, A.; Sverdlov, Y.; Bogush, V.; Croitoru, N.; Moscovich, H.; and Freeman, A.: Electroless processes for micro- and nanoelectronics. Electrochimica Acta 48(20–22), 2987 (2003)

    Article  CAS  Google Scholar 

  6. Mertig, M.; Kirsch, R.; Pompe, W.; and Engelhardt, H.: nanocluster array on S layer. Eur. Phys. J. D 9, 45 (1999)

    Article  CAS  Google Scholar 

  7. Knez, M.; Sumser, M.; Bittner, A. M.; Wege, C.; Jeske, H.; Martin, T. P.; and Kern, K.: Spatially Selective Nucleation of Metal Clusters on the Tobacco Mosaic Virus. Adv. Funct. Mater. 14, 116 (2004)

    Article  CAS  Google Scholar 

  8. Grummt, U.-W.; Geissler, M.; and Schmitz-Huebsch, T.: Chemical deposition of silver nanoclusters on self-assembled organic monolayers. A strategy to contact individual molecules. Chem. Phys. Lett. 263, 581 (1996)

    Article  CAS  Google Scholar 

  9. Andricacos, P. C.: Copper on-chip interconnections. The Electrochemical Society – Interface, Spring, 32 (1999)

    Google Scholar 

  10. Vaskelis, A.; Stalnionis, G.; and Jusys, Z.: Cyclic voltammetry and quartz crystal microgravimetry study of autocatalytic copper(II) reduction by cobalt(II) in ethylenediamine solutions. J. Electroanal. Chem. 465, 142 (1999)

    Article  CAS  Google Scholar 

  11. Jagannathan, R. and Krishnan, M.: Electroless plating of copper at a low pH level. IBM. J. Res. Develop. 37, 117 (1993)

    Article  CAS  Google Scholar 

  12. Van den Meerakker, J. E. A. M.: On the mechanism of electroless plating. II. One mechanism for different reductants. J. Appl. Electrochem. 11, 395 (1981)

    Article  Google Scholar 

  13. Wiese, H. and Weil, K. G.: Separation of partial processes at mixed electrodes. J. Electroanal. Chem. 228, 347 (1987)

    Article  CAS  Google Scholar 

  14. Inberg, A.; Zhu, L.; Hirschberg, G.; Gladkikh, A.; Croitoru, N.; Shacham-Diamand, Y.; and Gileadi, E.: Characterization of the initial growth stages of electroless Ag(W) films deposited on Si(100). J. Electrochem. Soc. 148, C784 (2001)

    Article  CAS  Google Scholar 

  15. Pohl, K. and Stierhof, Y.-D.: Action of gold chloride (“Gold Toning”) on silver-enhanced 1 nm gold markers. Microscopy Res. Technique 42, 59 (1998)

    Article  CAS  Google Scholar 

  16. Baschong, W. and Stierhof, Y.-D.: Preparation, use, and enlargement of ultrasmall gold particles in immunoelectron microscopy. Microscopy Res. Technique 42, 66 (1998)

    Article  CAS  Google Scholar 

  17. Ciacchi, L.; Pompe, W.; and De Vita, A.: Initial nucleation of platinum clusters after reduction of K2PtCl4 in aqueous solution: A first principles study. J. Am. Chem. Soc. 123, 7371 (2001)

    Article  CAS  Google Scholar 

  18. Van der Putten, A. M. T. and de Bakker, J. W. G.: Geometrical effects in the electroless metallization of fine metal patterns. J. Electrochem. Soc. 140, 2221 (1993)

    Article  Google Scholar 

  19. Kind, H.; Bittner, A. M.; Cavalleri, O.; Kern, K.; and Greber, T.: Electroless deposition of metal nanoislands on aminothiolate-functionalized Au(111) electrodes. J. Phys. Chem. B 102(39), 7582 (1998)

    Article  CAS  Google Scholar 

  20. Bittner, A. M.: Clusters on soft matter surfaces. Sur. Sci. Rep. 61, 383–428 (2006)

    Article  CAS  Google Scholar 

  21. Brandow, S. L.; Chen, M.-S.; Wang, T.; Dulcey, C. S.; Calvert, J. M.; Bohland, J. F.; Calabrese, G. S.; and Dressick, W. J.: Size-controlled colloidal Pd(II) catalysts for electroless Ni deposition in nanolithography applications. J. Electrochem. Soc. 144, 3425 (1997)

    Article  CAS  Google Scholar 

  22. Dressick, W.; Kondracki, L.; Chen, M.; Brandow, S.; Matijevic, E.; and Calvert, J.: Characterization of a colloidal Pd(II)-based catalyst dispersion for electroless metal deposition. Coll. Surf. A 108, 101 (1996)

    Article  CAS  Google Scholar 

  23. Bittner, A. M.: Biomolecular rods and tubes in nanotechnology. Naturwissenschaften 92, 51 (2005)

    Article  CAS  Google Scholar 

  24. Huczko, A.: Template-based synthesis of nanomaterials. Appl. Phys. A-Mater. Sci. Process. 70(4), 365 (2000)

    Google Scholar 

  25. Chen, M. S.; Brandow, S. L.; and Dressick, W. J.: Additive channel-constrained metallization of high-resolution features. Thin Solid Films 379(1–2), 203 (2000)

    Article  CAS  Google Scholar 

  26. Li, J.; Moskovits, M.; and Haslett, T. L.: Nanoscale electroless metal deposition in aligned carbon nanotubes. Chem. Mater. 10(7), 1963 (1998)

    Article  CAS  Google Scholar 

  27. Ang, L. M.; Hor, T. S. A.; Xu, G. Q.; Tung, C. H.; Zhao, S. P.; and Wang, J. L. S.: Decoration of activated carbon nanotubes with copper and nickel. Carbon 38, 363–372 (2000)

    Article  CAS  Google Scholar 

  28. Fink, D.; Petrov, A. V.; Rao, V.; Wilhelm, M.; Demyanov, S.; Szimkowiak, P.; Behar, M.; Alegaonkar, P. S.; and Chadderton, L. T.: Production parameters for the formation of metallic nanotubules in etched tracks. Radiat. Meas. 15, 751 (2003)

    Article  Google Scholar 

  29. Kordas, K.; Toth, G.; Levoska, J.; Huuhtanen, M.; Keiski, R.; Härkönen, M.; George, T. F.; and Vähäkangas, J.: Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates. Nanotechnology 17, 1459 (2006)

    Article  CAS  Google Scholar 

  30. Wirtz, M.; Yu, S. F.; and Martin, C. R.: Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst 127(7), 871 (2002)

    Article  CAS  Google Scholar 

  31. Ah, C. S.; Yun, Y. J.; Lee, J. S.; Park, H. J.; Ha, D. H.; and Yun, W. S.: Fabrication of integrated nanogap electrodes by surface-catalyzed chemical deposition. Appl. Phys. Lett. 88, 1331161 (2006)

    Article  Google Scholar 

  32. He, H.; BoussaadS.; Xu, B.; Li, C.; and Tao, N.: Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps. J. Electroanal. Chem. 522, 167 (2002)

    Article  CAS  Google Scholar 

  33. Niemeyer, C. M.: Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128 (2001)

    Article  CAS  Google Scholar 

  34. Powell, R. D.; Halsey, C. M. R.; Liu, W.; Joshi, V. N.; and HainfeldJ. F.: Giant platinum clusters: 2-nm covalent metal cluster labels. J. Struct. Biol. 127, 177 (1999)

    Article  CAS  Google Scholar 

  35. Taton, T. A.; Mirkin, C. A.; and Letsinger, R. L.: Scanometric DNA array detection with nanoparticle probes. Science 289, 1757 (2000)

    Article  CAS  Google Scholar 

  36. Möller, R.; Powell, R. D.; HainfeldJ. F.; and Fritzsche, W.: Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA Chips. Nano Lett. 5, 1475 (2005)

    Article  Google Scholar 

  37. Keren, K.; Krueger, M.; GiladR.; Ben-Yoseph, G.; Sivan, U.; and Braun, E.: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72 (2002)

    Article  CAS  Google Scholar 

  38. Park, S. H.; Barish, R.; Li, H.; Reif, J. H.; Finkelstein, G.; Yan, H.; and LaBean, T. H.: Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett. 5, 693 (2005)

    Google Scholar 

  39. Price, R. R.; Dressick, W. J.; and Singh, A.: Fabrication of nanoscale metallic spirals using phospholipid microtubule organizational templates. J. Am. Chem. Soc. 125, 11259 (2003)

    Article  CAS  Google Scholar 

  40. Banerjee, I. A.; Yu, L.; and Matsui, H.: Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation. Proc. Natl. Acad. Sci. USA 100, 14678 (2003)

    Article  CAS  Google Scholar 

  41. Behrens, S.; Wu, J.; Habicht, W.; and Unger, E.: Silver Nanoparticle and Nanowire Formation by Microtubule Templates. Chem. Mater. 16, 3085 (2004)

    Article  CAS  Google Scholar 

  42. Patolsky, F.; Weizmann, Y.; and Willner, I.: Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 15, 692 (2004)

    Article  Google Scholar 

  43. Scheibel, T.; Parthasarathy, R.; Sawicki, G.; Lin, X. M.; Jaeger, H.; and Lindquist, S. L.: Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. 100(8), 4527 (2003)

    Article  CAS  Google Scholar 

  44. Huang, Y.; Chiang, C.-Y.; Lee, S. K.; Gao, Y.; Hu, E. L.; DeYoreo, J.; and Belcher, A. M.: Programmable assembly. Nano Lett. 5, 1429 (2005)

    Article  CAS  Google Scholar 

  45. Reches, M. and Gazit, E.: Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625 (2003)

    Article  CAS  Google Scholar 

  46. Balci, S.; Bittner, A. M.; Hahn, K.; Scheu, C.; Knez, M.; Kadri, A.; Wege, C.; Jeske, H.; and Kern, K.: Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochim. Acta 51/28, 6251 (2006)

    Article  Google Scholar 

  47. Knez, M.; Bittner, A. M.; Boes, F.; Wege, C.; Jeske, H.; Maiß, E.; and Kern, K.: Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano Lett. 3, 1079 (2003)

    Article  CAS  Google Scholar 

  48. Falkner, J. C.; Turner, M. E.; Bosworth, J. K.; Trentler, T. J.; Johnson, J. E.; Lin, T.; and Colvin, V. L.: Virus crystals as nanocomposite scaffolds. J. Am. Chem. Soc. 127, 5274 (2005)

    Article  CAS  Google Scholar 

  49. Weizmann, Y.; Patolsky, F.; Popov, I.; and Willner, I.: Telomerase-generated templates for the growing of metal nanowires. Nano Lett. 4, 787 (2004)

    Article  CAS  Google Scholar 

  50. Matsui, H.; Pan, S.; Gologan, B.; and Jonas, S. H.: Bolaamphiphile nanotube-templated metallized wires. J. Phys. Chem. B 104, 9576 (2000)

    Article  CAS  Google Scholar 

  51. Djalali, R.; Chen, Y.-F.; and Matsui, H.: Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J. Am. Chem. Soc. 125, 5873 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.M. Bittner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bittner, A. (2009). Electroless Deposition Approaching the Molecular Scale. In: Shacham-Diamand, Y., Osaka , T., Datta, M., Ohba, T. (eds) Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-95868-2_15

Download citation

Publish with us

Policies and ethics