Skip to main content

Abstract

Electrodeposition is the process of cathodic deposition of metals, alloys, and other conducting materials from an electrolyte using an external potential (electric current) for the cation reduction process to occur at the working substrate. The deposition process is also known as electrolytic plating, electroplating, or simply plating. Electrodeposition is widely employed in a variety of applications ranging from coatings for wear and corrosion resistance to nanoscale feature fabrication for ultra-large-scale integration (ULSI). The deposition thickness may vary from few angstroms of uniformly deposited compact films to electroformed structures that are millimeters thick. Compared to competing vacuum deposition processes, electrodeposition has emerged as more environmentally friendly and cost-effective micro/nanofabrication method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlesinger, M. and Paunovic, M.: Modern Electroplating (eds.), 4th edition, Wiley Interscience, New York (2000)

    Google Scholar 

  2. Romankiw, L. T.; Croll, I.; and Hatzakis, M.: Batch fabricated thin film. Magnetic recording head. IEEE Trans. Magn. 6(4), 729 (1970)

    Google Scholar 

  3. Osaka T.: Electrochemical formation and microstructure in thin films for high functional devices. Electrochim. Acta. 42, 3015 (1997)

    CAS  Google Scholar 

  4. Romankiw, L. T.: A path: from electroplating through lithographic masks in electronics to LIGA in MEMS. Electrochim. Acta. 42, 2985 (1997)

    Article  Google Scholar 

  5. Romankiw, L. T. and Turner, D. (eds.): Electrodeposition Technology: Theory and Practice, PV 86–17, Electrochemical Society Proceedings, New Jersey (1987)

    Google Scholar 

  6. Datta, M.; Shenoy, R. V.; Jahnes, C.; Andricacos, P. C.; Horkans, J.; Dukovic, J. O.; Romankiw, L. T.; Roeder, J.; Deligianni, H.; Nye, H.; Agarwala, B.; Tong, H. M.; and Totta, P. A.: Electrochemical fabrication of mechanically robust C4 s. J. Electrochem. Soc. 142, 3779 (1995)

    Article  CAS  Google Scholar 

  7. Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; and Deligianni, H.; Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567 (1998)

    Article  CAS  Google Scholar 

  8. Datta, M.: Electrochemical processing technologies in chip fabrication: Challenges and opportunities. Electrochim. Acta. 48, 2975 (2003)

    Article  CAS  Google Scholar 

  9. Seraphim, D. P.; Barr, D. E.; Chen, W. T.; Schmitt, G. P.; and Tummala, R. R.: In Microelectronic Packaging Handbook, Part III, 2nd edition, Tummala, R. R.; Rymaszewski, E. J.; and Klopfenstein, A. G. (eds.), Chapman and Hall, New York (1997)

    Google Scholar 

  10. Datta, M.: In New Trends in Electrochemical Technology, Microelectronic Packaging, Datta, M.; Osaka, T.; and Schultze, J. W. (eds.), CRC Press, New York, 3, 3 (2005)

    Google Scholar 

  11. Datta, M. and Landolt, D.: Fundamental aspects and applications of electrochemical microfabrication. Electrochim. Acta. 45, 2535 (2000)

    Article  CAS  Google Scholar 

  12. Landolt D.: Electrochemical and materials science aspects of alloy deposition. Electrochim. Acta. 39, 1075 (1994)

    Article  CAS  Google Scholar 

  13. Ibl, N.: In Comprehensive Treatise of Electrochemistry. Yeager, E.; Bockris, J. O’M.; and Conway; B. (eds.), Plenum Press, New York 6(1), 133, 239, (1982)

    Google Scholar 

  14. Dukovic, J. O.: Feature-scale simulation of resist-patterned electrodeposition. IBM J. Res. Dev. 37(2), 125 (1993)

    Article  CAS  Google Scholar 

  15. Madore, C.; Matlosz, M.; and Landolt, D.: Blocking inhibitors in cathodic leveling. I. Theoretical analysis. J. Electrochem. Soc. 143(12), 3927 (1996)

    Article  CAS  Google Scholar 

  16. Kardos, O.: Current distribution on microprofiles, Part I, II, III. Plating, 61, 129, 229, 316 (1974)

    Google Scholar 

  17. Kruglikov, S. S.; Kudriavtsev, N. T.; Vorobiova, G. F.; and Antonov, A. Ya.: On the mechanism of levelling by addition agents in electrodeposition of metals. Electrochim. Acta. 10(3), 253 (1965)

    Article  CAS  Google Scholar 

  18. Dukovic, J. and Tobias, C. W.: Simulation of leveling in electrodeposition. J. Electrochem. Soc. 137, 3748 (1990)

    Article  CAS  Google Scholar 

  19. Seiter, H. and Fischer, H.: Electrocrystallization of metals. Z. Elektrochemie. 63, 249 (1959)

    CAS  Google Scholar 

  20. Winand, R.: Electrodeposition of metals and alloys-new results and perspectives. Electrochim. Acta. 39(8-9), 1109 (1994)

    Article  Google Scholar 

  21. Schimdt, W. U.; Alkire, R. C.; and Gewirth, A.: Mechanic [sic] study of copper deposition onto gold surfaces by scaling and spectral analysis of in situ atomic force microscopic images. J. Electrochem. Soc. 143(10), 3122 (1996)

    Article  Google Scholar 

  22. Armstrong, M. J. and Muller, R. H.: In situ scanning tunneling microscopy of copper deposition with Benzotriazole. J. Electrochem. Soc. 138(8), 2303 (1991)

    Article  CAS  Google Scholar 

  23. Kelly, J. J.; Tian, C.; and West, A. C.: Leveling and microstructural effects of additives for copper electrodeposition. J. Electrochem. Soc. 146, 2540 (1999)

    Article  CAS  Google Scholar 

  24. Ibl, N.: Some theoretical aspects of pulse electrolysis. Surface Technology. 10, 81 (1980)

    Article  CAS  Google Scholar 

  25. Chin, D. T.: Mass transfer and current-potential relation in pulse electrolysis. J. Electrochem. Soc. 130, 1657 (1983)

    Article  CAS  Google Scholar 

  26. Datta, M. and Landolt, D.: Experimental investigation of mass transport in pulse plating. Surface Technol. 25, 97 (1985)

    Article  CAS  Google Scholar 

  27. Pesco, A. M. and Cheh, H. Y.: The current distribution within plated through-holes. J. Electrochem. Soc. 136(2), 408 (1989)

    Article  CAS  Google Scholar 

  28. Wan, H. H.; Chang, R. Y.; and Yang, W. L.: Current distribution in a jet through-hole system during periodic electrolysis. J. Electrochem. Soc. 140(5), 1380 (1993)

    Article  CAS  Google Scholar 

  29. Yung, E. K.; Romankiw, L. T.; and Alkire, R. C.: Plating of copper into through-holes and vias. J. Electrochem. Soc. 136(1), 206 (1989)

    Article  CAS  Google Scholar 

  30. Dini, J. W.: In Modern Electroplating. Schlesinger, M.; and Paunovic, M.: (eds.), 4th edition, Wiley Interscience, New York, 61 (2000)

    Google Scholar 

  31. Winnad, R.: Electrodeposition of metals and alloys-new results and perspectives. Electrochim. Acta. 39, 1091 (1994)

    Article  Google Scholar 

  32. Donepudi, V. S.; Venkatachalapathy, R.; Ozemoyah, P. O.; Johnson, C. S.; and Prakash, J.: Electrodeposition of copper from sulfate electrolytes: Effects of Thiourea on resistivity and electrodeposition mechanism of copper. Electrochem. Solid-State Lett. 4(2), C, 13 (2001)

    Article  Google Scholar 

  33. Landolt, D.: Electrodeposition science and technology in the last quarter of the twentieth century. J. Electrochem. Soc. 149(3), S, 9 (2002)

    Article  Google Scholar 

  34. Moffat, T. P.; Bonewich, J. E.; Huber, W. H.; Stanishevsky, A.; Kelly, D. R.; Stafford, G. R.; and Josell, D.: Superconformal electrodeposition of copper in 500–90 nm features. J. Electrochem. Soc. 147(12), 4524 (2000)

    Article  CAS  Google Scholar 

  35. Cabral, C.; Andricacos, P. C.; Cignac, L. M.; and Noyan, I. C.: Room temperature annealing of damascene plated Cu chip metallization. Adv. Metallization Conf. Proc., ULSI XIV, 81 (1998)

    Google Scholar 

  36. Dubin, V. M.; Simka, H. S.; Shankar, S.; Moon, P.; Marieb, T.; and Datta, M.: In New trends in electrochemical technology, microelectronic packaging. Datta, M.; Osaka, T.; and Schultze, J. W. (eds.), CRC Press, New York. 3, 31 (2005)

    Google Scholar 

  37. Moffat, T. P.; Wheeler, D.; Huber, W. H.; and Josell, D.: Superconformal electrodeposition of copper. Electrochem. & Solid-State Lett. 4, C26 (2001)

    Article  Google Scholar 

  38. Josell, D.; Wheeler, D.; Huber, W. H.; Bonevich, J. E.; and Moffat, T. P.: A simple equation for predicting superconformal electrodeposition in submicrometer trenches. J. Electrochem. Soc. 148, C767 (2001)

    Article  Google Scholar 

  39. Wheeler, D.; Josell, D.; and Moffat, T. P.: Modeling of superconformal electrodeposition using the level set method. J. Electrochem. Soc. 150, C302 (2003)

    Article  Google Scholar 

  40. West, A. C.; Mayer, S.; and Reid, J.: A superfilling model that predicts bump formation. Electrochem. & Solid-State Lett. 4, C50 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhav Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Datta, M. (2009). Electrodeposition. In: Shacham-Diamand, Y., Osaka , T., Datta, M., Ohba, T. (eds) Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-95868-2_4

Download citation

Publish with us

Policies and ethics