Skip to main content

Surface Femtochemistry

  • Chapter
  • First Online:
Model Systems in Catalysis

Abstract

A challenging task in surface science is to unravel the dynamics of molecules on surfaces associated with, for example, surface molecular motion and (bimolecular) reactions. As these processes typically take place on femtosecond time scales, ultrafast lasers must be used in these studies. We demonstrate two complementary approaches to study these ultrafast molecular dynamics at metal surfaces. In the first, the molecules are studied after desorbing from the surface initiated by a laser pulse using the so called time-of-flight technique. In the second approach, molecules are studied in real time during their diffusion over the surface by using surface-specific pump-probe spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Backus EHG, Eichler A, Kleyn AW, Bonn M (2005) Real-time observation of molecular motion on a surface. Science 310:1790

    Article  CAS  Google Scholar 

  2. Backus EHG, Forsblom M, Persson M, Bonn M (2007) Highly efficient ultrafast energy transfer into molecules at surface step sites. J Phys Chem C 111:6149

    Article  CAS  Google Scholar 

  3. Bonn M, Kleyn AW, Kroes GJ (2002) Real time chemical dynamics at surfaces. Surf Sci 500:475

    Article  CAS  Google Scholar 

  4. Frischkorn C, Wolf M (2006) Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem Rev 106:4207

    Article  CAS  Google Scholar 

  5. Petek H, Weida MJ, Nagano H, Ogawa S (2000) Real-time observation of adsorbate atom motion above a metal surface. Science 288:1402

    Article  CAS  Google Scholar 

  6. Bauer M, Lei C, Read K, Tobey R, Gland J, Murnane MM, Kapteyn HC (2001) Direct observation of surface chemistry using ultrafast soft-X-ray pulses. Phys Rev Lett 87:025501

    Article  Google Scholar 

  7. Denzler DN, Frischkorn C, Hess C, Wolf M, Ertl G (2003) Electronic excitation and dynamic promotion of a surface reaction. Phys Rev Lett 91:226102

    Article  CAS  Google Scholar 

  8. Bartels L, Wang F, Möller D, Knoesel E, Heinz TF (2004) Real-space observation of molecular motion induced by femtosecond laser pulses. Science 305:648

    Article  CAS  Google Scholar 

  9. Fournier F, Zheng W, Carrez S, Dubost H, Bourguignon B (2004) Vibrational dynamics of adsorbed molecules under conditions of photodesorption: Pump-probe SFG spectra of CO/Pt(111). J Chem Phys 121:4839

    Article  CAS  Google Scholar 

  10. Stépán K, Güdde J, Höfer U (2005) Time-resolved measurement of surface diffusion induced by femtosecond laser pulses. Phys Rev Lett 94:236103

    Article  Google Scholar 

  11. Lane IM, King DA, Liu ZP, Arnolds H (2006) Real-time observation of nonadiabatic surface dynamics: The first picosecond in the dissociation of NO on iridium. Phys Rev Lett 97:186105

    Article  Google Scholar 

  12. Funk S, Bonn M, Denzler DN, Hess C, Wolf M, Ertl G (2000) Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses. J Chem Phys 112:9888

    Article  CAS  Google Scholar 

  13. Struck LM, Richter LJ, Buntin SA, Cavanagh RR, Stephenson JC (1996) Femtosecond laser-induced desorption of CO from Cu(100): Comparison of theory and experiment. Phys Rev Lett 77:4576

    Article  CAS  Google Scholar 

  14. Bonn M, Hess C, Funk S, Miners JH, Persson BNJ, Wolf M, Ertl G (2000) Femtosecond surface vibrational spectroscopy of CO adsorbed on Ru(001) during desorption. Phys Rev Lett 84:4653

    Article  CAS  Google Scholar 

  15. Lisowski M, Loukakos PA, Bovensiepen U, Stähler J, Gahl C, Wolf M (2004) Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl Phys A 78:165

    Article  CAS  Google Scholar 

  16. Bonn M, Funk S, Hess C, Denzler DN, Stampfl C, Scheffler M, Wolf M, Ertl G (1999) Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285:1042

    Article  CAS  Google Scholar 

  17. Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Identification of the “active sites” of a surface-catalyzed reaction. Science 273:1688

    Article  CAS  Google Scholar 

  18. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814

    Article  Google Scholar 

  19. Gambardella P, Šljivancanin Z, Hammer B, Blanc M, Kuhnke K, Kern K (2001) Oxygen dissociation at Pt Steps. Phys Rev Lett 87:056103

    Article  CAS  Google Scholar 

  20. Backus EHG, Eichler A, Grecea ML, Kleyn AW, Bonn M (2004) Adsorption and dissociation of NO on stepped Pt(533). J Chem Phys 121:7946

    Article  CAS  Google Scholar 

  21. Backus EHG, Bonn M (2005) A quantitative comparison between reflection absorption infrared and sum-frequency generation spectroscopy. Chem Phys Lett 412:152

    Article  CAS  Google Scholar 

  22. Xu J, Yates JT Jr (1995) Terrace width effect on adsorbate vibrations: A comparison of Pt(335) and Pt(112) for chemisorption of CO. Surf Sci 327:193

    Article  CAS  Google Scholar 

  23. Wang H, Tobin RG, DiMaggio CL, Fisher GB, Lambert DK (1997) Reactions of N and NO on Pt(533). J Chem Phys 107:9569

    Article  CAS  Google Scholar 

  24. Lambert DK, Tobin RG (1990) CO on Pt(335): Vibrational Stark effect, mode coupling, and local field effects on a stepped surface. Surf Sci 232:149

    Article  CAS  Google Scholar 

  25. Hasselbrink E (1995) In: Dai H-L, Ho W (eds) Laser spectroscopy and photochemistry on metal surfaces Part II, World Scientific Publishing, Singapore

    Google Scholar 

  26. Zimmerman FM, Ho W (1995) State resolved studies of photochemical dynamics at surfaces. Surf Sci Rep 22:127

    Article  Google Scholar 

  27. Grecea ML, Backus EHG, Riedmüller B, Eichler A, Kleyn AW, Bonn M (2004) The interaction of water with the Pt(533) surface. J Phys Chem B 108:12575

    Article  CAS  Google Scholar 

  28. van der Ham EWM, Vrehen QHF, Eliel ER (1996) High-resolution sum-frequency spectra using broadband laser sources. Surf Sci 368:96

    Article  Google Scholar 

  29. Richter LJ, Petralli-Mallow TP, Stephenson JC (1998) Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses. Opt Lett 23:1594

    Article  CAS  Google Scholar 

  30. Kubota J, Domen K (2007) Study of the dynamics of surface molecules by time-resolved sum-frequency generation spectroscopy. Anal Bioanal Chem 388:17

    Article  CAS  Google Scholar 

  31. As our experimental geometry does not allow to measure the angular distribution, we use cos4 θ (based on M. Wilde et al. (1999) Surf Sci 427–428:27, and references therein) to estimate the yield at 0°

    Google Scholar 

  32. Brandbyge M, Hedegård P, Heinz TF, Misewich JA, Newns DM (1995) Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption. Phys Rev B 52:6042

    Article  CAS  Google Scholar 

  33. For the strong coupling observed here, the reaction rate follows the electronic transient temperature quite closely, resulting in a relative large error in the coupling time

    Google Scholar 

  34. Lane IM, Liu Z-P, King DA, Arnolds H (2007) Ultrafast vibrational dynamics of NO and CO adsorbed on an iridium surface. J Phys Chem C 111:14198

    Article  CAS  Google Scholar 

  35. Szymanski P, Harris AL, Camillone N III (2007) Adsorption-state-dependent subpicosecond photoinduced desorption dynamics. J Chem Phys 126:214709

    Article  Google Scholar 

  36. Szymanski P, Harris AL, Camillone N III (2007) Temperature-dependent electron-mediated coupling in subpicosecond photoinduced desorption. Surf Sci 601:3335

    Article  CAS  Google Scholar 

  37. It should be noted that the extracted electron coupling times for NO are smaller than the inverse mode frequency of the low-frequency modes. This is unphysical, as energy transfer into the low-frequency modes cannot occur faster than the motion associated with the modes. Although the absolute values for the friction coefficient obtained with this simple one-dimensional friction model may have limited meaning, the relative difference between step and terrace coefficient clearly indicates a ∼3-fold stronger coupling of the laser-heated electrons to the adsorbate at the steps relative to the terraces

    Google Scholar 

  38. Dose V (1985) Momentum-resolved inverse photoemission. Surf Sci Rep 5:337

    Article  CAS  Google Scholar 

  39. Springer C, Head-Gordon M, Tully JC (1994) Simulations of femtosecond laser-induced desorption of CO from Cu(100). Surf Sci 320:L57

    Article  CAS  Google Scholar 

  40. Tully JC, Gomez M (1993) Electronic and phonon mechanisms of vibrational relaxation: CO on Cu(100). J Vac Sci Technol A 11:1914

    Article  CAS  Google Scholar 

  41. Luntz AC, Persson M, Wagner S, Frischkorn C, Wolf M (2006) Femtosecond laser induced associative desorption of H2 from Ru(0001): Comparison of “first principles” theory with experiment. J Chem Phys 124:244702

    Article  CAS  Google Scholar 

  42. Liu ZP, Hu P (2003) General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J Am Chem Soc 125:1958

    Article  CAS  Google Scholar 

  43. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Ammonia synthesis from first-principles calculations. Science 307:555

    Article  CAS  Google Scholar 

  44. Buatier F, de Mongeot A, Toma AM, Lizzit S, Petaccia L, Baraldi A (2006) Carbon monoxide dissociation on Rh nanopyramids. Phys Rev Lett 97:056103

    Article  Google Scholar 

  45. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  46. Jänsch HJ, Xu J, Yates JT (1993) Electron stimulated surface migration of CO on Pt(533). First spectroscopic evidence for a new phenomenon, J. Chem Phys 99:721

    Google Scholar 

  47. Yoshinobu J, Tsukahara N, Yasui F, Mukai K, Yamashita Y (2003) Lateral displacement by transient mobility in chemisorption of CO on Pt(997). Phys Rev Lett 90:248301

    Article  CAS  Google Scholar 

  48. The frequency of the frustrated translational mode for the step sites is deduced from the temperature dependence of the C–O stretch mode, and is, in good agreement with previous reports [58]

    Google Scholar 

  49. Germer TA, Stephenson JC, Heilweil EJ, Cavanagh RR (1993) Picosecond measurement of substrate-to-adsorbate energy transfer: The frustrated translation of CO/Pt(111). J Chem Phys 98:9986

    Article  CAS  Google Scholar 

  50. Budde F, Heinz TF, Kalamarides A, Loy MMT, Misewich JA (1993) Vibrational distributions in desorption induced by femtosecond laser pulses: Coupling of adsorbate vibration to substrate electronic excitation. Surf Sci 283:143

    Article  CAS  Google Scholar 

  51. Komeda T, Kim Y, Kawai M, Persson BNJ, Ueba H (2002) Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295:2055

    Article  CAS  Google Scholar 

  52. Pascual JI, Lorente N, Song Z, Conrad H, Rust H-P (2003) Selectivity in vibrationally mediated single-molecule chemistry. Nature 423:525

    Article  CAS  Google Scholar 

  53. Ma J, Xiao X, DiNardo NJ, Loy MMT (1998) Diffusion of CO on Pt(111) studied by an optical diffraction method. Phys Rev B 58:4977

    Article  CAS  Google Scholar 

  54. Reutt-Robey JE, Doren DJ, Chabal YJ, Christman SB (1988) Microscopic CO diffusion on a Pt(111) surface by time-resolved infrared spectroscopy. Phys Rev Lett 61:2778

    Article  CAS  Google Scholar 

  55. Yates JT, Alvey MD, Dresser MJ, Henderson MA, Kiskinova M, Ramsier RD, Szabó A (1992) Direct observation of chemical bond dynamics on surfaces. Science 255:1397

    Article  CAS  Google Scholar 

  56. Jigato MP, Walter WK, King DA (1994) The temperature dependent effect of adsorbate hindered vibrations on NEXAFS analyses: NO on Pd{110}. Surf Sci 310:273

    Article  Google Scholar 

  57. Hu P, King DA, Crampin S, Lee M-H, Payne MC (1997) Ab initio diffusional potential energy surface for CO chemisorption on Pd{110} at high coverage: Coupled translation and rotation. J Chem Phys 107:8103

    Article  CAS  Google Scholar 

  58. Schweizer E, Persson BNJ, Tüshaus M, Hoge D, Bradshaw AM (1989) The potential energy surface, vibrational phase relaxation and the order-disorder transition in the adsorption system Pt{111}–CO. Surf Sci 213:49

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM),” which is financially supported by the “Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).” We are grateful to A.W. Kleyn, A. Eichler, M. Persson, M. Forsblom, H. Ueba, and M. Wolf for their help, many useful discussions, and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mischa Bonn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Backus, E.H.G., Bonn, M. (2010). Surface Femtochemistry. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_10

Download citation

Publish with us

Policies and ethics