Skip to main content

Chiral Expression by Organic Architectures at Metal Surfaces: the Role of Both Adsorbate and Surface in Inducing Asymmetry

  • Chapter
  • First Online:
Model Systems in Catalysis
  • 1711 Accesses

Abstract

The manifestation of chirality at surfaces has attracted much attention in recent years. In this review, some of the main features of chiral endowments by complex organic molecules at defined metal surfaces are reviewed. Detailed surface spectroscopic data have enabled a hierarchy of chiral expressions to be delineated from point group chirality expressed by local chiral motifs, to space group chirality in which these motifs act as building blocks which self-assemble into organised chiral structures, to deeper propagation of chirality into the metal leading to chiral reconstructions. Chiral endowments by both chiral and achiral molecules is discussed alongside the implications for progressing chirality from the local to the global level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheldon RA (1993) Industrial synthesis of optically active compounds, chirotechnology. Dekker, New York

    Google Scholar 

  2. Dubois V, Jannes G (eds) (1995) Chiral reactions in heterogeneous catalysis. Plenum, New York, p. 33

    Google Scholar 

  3. Baiker A, Blaser HU (1997) In: Ertl GH, Knoezinger H, Weinheim J (eds) Handbook of heterogeneous catalysis, Vol 5. Wiley-VHC, New York, p. 2442

    Google Scholar 

  4. McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on ‘chiral’ metal surfaces. Langmuir 12:2483

    Article  CAS  Google Scholar 

  5. Besson M, Debleqc F, Gallezot P, Neto S, Pinel C (2000) Diastereoselective heterogeneous catalytic hydrogenation of 2-methyl nicotinic acid using pyroglutamate chiral auxiliary. C Chem Eur J 6:949

    Article  CAS  Google Scholar 

  6. Izumi Y (1983) Modified raney nickel (MRNi) catalyst: Heterogeneous enantio-differentiating (asymmetric) catalyst. Adv Catal 32:215

    Article  CAS  Google Scholar 

  7. Tai A, Harada T (1986) Asymmetrically modified nickel catalysts. In: Iwasawa Y (ed) Tailored metal catalysts. Reidel, Tokyo, p. 265

    Google Scholar 

  8. Orito Y, Imai S, Niwa J (1980) J Chem Soc Jpn 1:670

    Google Scholar 

  9. Webb G, Wells PB (1992) Asymmetric hydrogenation. Catal Today 12:319

    Article  CAS  Google Scholar 

  10. Blaser HU, Jalett HP, Muller M, Studer M (1997) Enantioselective hydrogenation of α-Ketoesters using cinchona modified platinum catalysts and related systems. Catal Today 37:441

    Article  CAS  Google Scholar 

  11. Ortega Lorenzo M, Haq S, Murray P, Raval R, Baddeley CJ (1999) Creating chiral surface for enantioselective heterogeneous catalysis: (R, R)-tartaric acid on Cu(110). J Phys Chem B 103:10661

    Article  Google Scholar 

  12. Ortega Lorenzo M, Baddeley CJ, Muryn C, Raval R (2000) Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404:376

    Article  Google Scholar 

  13. Ortega Lorenzo M, Humblot V, Murray P, Baddeley CJ, Haq S, Raval R (2002) Chemical transformations, molecular transport and kinetic barriers in creating the chiral phase of (R, R)-tartaric acid on Cu(110). J Catal 205:123

    Article  Google Scholar 

  14. Raval R (2000) Assembling molecular guidance systems for heterogeneous enantioselective catalysis. CATTECH 4:1

    Google Scholar 

  15. Raval R (2003) Chiral expressions at metal surfaces. Curr Opin Solid State Mater Sci 7:67

    Article  CAS  Google Scholar 

  16. Barlow S, Raval R (2003) Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf Sci Rep 50:201

    Article  CAS  Google Scholar 

  17. Barlow S, Raval R (2008) Nanoscale insights in the creation and transfer of chirality in amino acid monolayers at defined metal surfaces. Curr Opin Colloid Inter Sci 13:65

    Article  CAS  Google Scholar 

  18. Gomes JRB, Gomes JANF (1999) Absorption of the formate species on copper surfaces: A DFT study. Surf Sci 432:279

    Google Scholar 

  19. Barbosa LAMM, Sautet P (2001) Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: A periodic density functional theory study. J Am Chem Soc 123:6639

    Article  CAS  Google Scholar 

  20. Fasel R, Wider J, Quitmann C, Ernst K-H, Greber T (2004) Determination of the absolute chirality of adsorbed molecules. Angew Chem Int Ed 116:2913

    Google Scholar 

  21. Hernse CGM, Van Bavel AP, Jansen APJ, Barbosa LAMM, Sautet P, Van Santen RA (2004) Formation of chiral domains for tartaric acid on Cu(110): A combined DFT and kinetic Monte Carlo study. J Phys Chem B 108:11035

    Google Scholar 

  22. Humblot V, Haq S, Muryn C, Hofer WA, Raval R (2002) From local adsorption stresses to chiral surfaces: (R, R)-tartaric acid on Ni(110), J. Am Chem Soc 124:503

    Article  CAS  Google Scholar 

  23. Humblot V, Haq S, Muryn C, Raval R (2004) (R, R)-tartaric acid on Ni(110): The dynamic nature of chiral adsorption motifs. J Catal 228:130

    Article  CAS  Google Scholar 

  24. Hofer WA, Humblot V, Raval R (2004) Conveying chirality onto the electronic structure of achiral metals: (R,R)-Tartaric acid on nickel. Surf Sci 554:141

    Google Scholar 

  25. Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW (2003) Enantiospecific electrodeposition of a chiral catalyst. Nature 425:490

    Article  CAS  Google Scholar 

  26. Humblot V, Ortega Lorenzo M, Baddeley CJ, Haq S, Raval R (2004) Local and global chirality at surfaces: succinic acid versus tartaric acid on Cu(110). J Am Chem Soc 126:6460

    Article  CAS  Google Scholar 

  27. Humblot V, Raval R (2005) Chiral metal surfaces from the adsorption of chiral and achiral molecules. Appl Surf Sci 241:150

    Article  CAS  Google Scholar 

  28. Liu N, Haq S, Darling G, Raval R (2008) in preparation

    Google Scholar 

  29. Liu N, Haq S, Darling G, Raval R (2007) Direct visualisation of enantiospecific substitution of chiral guest molecules into heterochiral molecular assemblies at surfaces. Angew Chem Int Ed 46:1

    Article  Google Scholar 

  30. De Feyter S, De Schryver FC (2003) Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev 32:393

    Google Scholar 

  31. Ernst K-H (2006) Supramolecular surface chirality. Top Curr Chem 265:209

    Google Scholar 

  32. Perez-Garcia L, Amabilino DB (2007) Spontaneous resolution, whence and wither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supramolecular polymers and assemblies. Chem Soc Rev 36:941

    Article  CAS  Google Scholar 

  33. Ma Z, Zaera F Chiral, Modification of Catalytic Surfaces: In Design of Heterogeneous Catalysts. In: Ozkan US (ed) Design of heterogeneous catalysis: New approaches based on synthesis, characterization, and modelling. Wiley-VCH, New York.

    Google Scholar 

  34. Blaser HJ (1991) Enantioselective synthesis using chiral heterogeneous catalysts. Tetrahedron: Asymmetry 2:843

    Article  CAS  Google Scholar 

  35. Baiker A (1998) Chiral catalysis on solids. Curr Opin Solid State Mater Sci 3:86

    Article  CAS  Google Scholar 

  36. Keane MA, Webb G (1992) The enantioselective hydrogenation of methyl acetoacetate over supported nickel catalysts I. The modification procedure. J Catal 136:1

    Google Scholar 

  37. Keane MA (1997) Interaction of optically active tartaric acid with a nickel-silica catalyst: role of both the modification and reaction in determining enantioselectivity. Langmuir 13:41

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Raval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Forster, M., Raval, R. (2010). Chiral Expression by Organic Architectures at Metal Surfaces: the Role of Both Adsorbate and Surface in Inducing Asymmetry. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_5

Download citation

Publish with us

Policies and ethics