Skip to main content

Miniaturized Optical Fiber Inline Interferometers for Chemical Sensing

  • Chapter
  • First Online:
Advanced Photonic Structures for Biological and Chemical Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter reviews the miniaturized optical fiber inline interferometers for chemical sensing based on the detection of composition variation induced refractive index changes. When used as chemical sensors, these miniaturized devices have the common advantages of small size, all-glass ruggedized structure, high sensitivity, fast response time, and large dynamic range. These advantages make them particularly attractive for real-world applications where, in situ, continuous monitoring is required. Specifically, two general types of interferometers are reviewed including the low-finesse Fabry-Perot interferometer and the core-cladding mode interferometer. The operation principles of these two types of interferometers are described. The signal processing methods are discussed. The representative structures, fabrication methods, and application examples of each interferometer type are provided with certain level of details. The advantages and disadvantages of each sensor structure are also highlighted in the discussions, with the hope that innovative researches will be stimulated to solve the technical challenges and explore future applications of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, C. E.; Taylor, H. F., Interferometric optical fiber sensors using internal mirrors, Electron. Lett. 1988, 24, 193–194

    Article  Google Scholar 

  2. Claus, R. O.; Gunther, M. F.; Wang, A.; Murphy, K. A., Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements for ?200 to 900°C, J. Smart Mater. Struct 1992, 1, 237–242

    Article  Google Scholar 

  3. Xiao, H.; Deng, J.; Pickrell, G.; May, R. G.; Wang, A., Single-crystal sapphire fiber-based strain sensor for high-temperature applications, J. Lightwave Technol. 2003, 21, 2276–2283

    Article  CAS  Google Scholar 

  4. Wang, A.; Xiao, H.; Wang, J.; Wang, Z.; Zhao, W.; May, R. G., Self-calibrated interferometric-intensity-based optical fiber sensors, J. Lightwave Technol. 2001, 19, 1495–1501

    Article  Google Scholar 

  5. Hecht, E. Optics, 4th edn.; Addison Wesley, New York, NY, 2002

    Google Scholar 

  6. Qi, B.; Pickrell, G. R.; Xu, J.; Zhang, P.; Duan, Y.; Peng, W.; Huang, Z.; Huo, W.; Xiao, H.; May, R. G.; Wang, A., Novel data processing techniques for dispersive white light interferometer, Opt. Eng. 2003, 42, 3165–3171

    Article  Google Scholar 

  7. Xiao, G. Z.; Adnet, A.; Zhang, Z. Y.; Sun, F. G.; Grover, C. P., Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor, Sens. Actuators A-Phys. 2005, 118, 177–182

    Article  CAS  Google Scholar 

  8. Bhatia, V.; Murphy, K. A.; Claus, R. O.; Jones, M. E.; Grace, J. L.; Tran, T. A.; Greene, J. A., Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system, Meas. Sci. Technol. 1996, 7, 58–61

    Article  CAS  Google Scholar 

  9. Zhang, Y.; Chen, X.; Wang, Y.; Cooper, K. L.; Wang, A., Microgap multicavity Fabry-Pérot biosensor, J. Lightwave Technol. 2007, 25, 1797–1804

    Article  Google Scholar 

  10. Xiao, H.; Deng, J.; Wang, Z.; Huo, W.; Zhang, P.; Luo, M.; Pickroll, G. R.; May, R. G.; Wang, A., Fiber optic pressure sensor with self-compensation capability for harsh environment applications, Opt. Eng. 2005, 44, 1–10

    Google Scholar 

  11. Zhang, Y.; Shibru, H.; Cooper, K. L.; Wang, A., Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor, Opt. Lett. 2005, 30, 1021–1023

    Article  CAS  Google Scholar 

  12. Ran, Z. L.; Rao, Y. J.; Liu, W. J.; Liao, X.; Chiang, K. S., Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index, Opt. Express 2008, 16, 2252–2263

    Article  CAS  Google Scholar 

  13. Li, M.; Menon, S.; Nibarger, J. P.; Gibson, G.N., Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics, Phys. Rev. Lett. 1999, 82, 2394–2397

    Article  CAS  Google Scholar 

  14. Davis, K. M.; Miura, K.; Sugimoto, N; Hirao, K., Writing waveguides in glass with a femtosecond laser, Opt. Lett. 1996, 21, 1729–1731

    Article  CAS  Google Scholar 

  15. Szameit, A.; Bloemer, D.; Burghoff, J.; Pertsch, T.; Nolte, S.; Lederer, F.; Tuennermann, A., Hexagonal waveguide arrays written with fs-laser pulses, Appl. Phys. B. 2006, 82, 507–512

    Article  CAS  Google Scholar 

  16. Cheng, Y.; Tsai, H. L.; Sugioka, K.; Midorikawa, K., Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining, Appl. Phys. A. 2006, 85, 11–14

    Article  CAS  Google Scholar 

  17. Sun, H.; He, F.; Zhou, Z.; Cheng, Y.; Xu, Z.; Sugioka, K.; Midorikawa, K., Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, Opt. Lett. 2007, 32, 1536–1538

    Article  Google Scholar 

  18. Wei, T.; Han, Y.; Tsai, H. L.; Xiao, H., Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser, Opt. Lett. 2008, 33, 536–538

    Article  Google Scholar 

  19. Rao, Y. J.; Deng, M.; Duan, D. W.; Yang, X. C.; Zhu, T.; Cheng, G. H., Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser, Opt. Express 2007, 15, 14123–14128

    Article  Google Scholar 

  20. Wei, T.; Han, Y.; Li, Y.; Tsai, H.; Xiao, H., Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement, Opt. Express 2008, 16, 5764–5769

    Article  CAS  Google Scholar 

  21. Hawkes, J. B.; Astherimer, R. W., Temperature coefficient of the refractive index of water, J. Opt. Soc. Am. 1948, 38, 804–806

    Article  CAS  Google Scholar 

  22. Liu, N.; Hui, J.; Sun, C.; Dong, J.; Zhang, L.; Xiao, H., Nanoporous zeolite thin film-based fiber intrinsic Fabry-Perot interferometric sensor for detection of dissolved organics in water, Sensors 2006, 6, 835–847

    Article  CAS  Google Scholar 

  23. Lee, B. H.; Nishii, J., Dependence of fringe spacing on the grating separation in a long-period fiber grating pair, Appl. Opt. 1999, 38, 3450–3459

    Article  CAS  Google Scholar 

  24. Allsop, T.; Reeves, R.; Webb, D. J.; Bennion, I.; Neal, R., A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer, Rev. Sci. Instrum. 2002, 73, 1702–1705

    Article  CAS  Google Scholar 

  25. Lee, B. H.; Nishii, J., Bending sensitivity of in-series long-period fiber gratings, Opt. Lett. 1998, 23, 1624–1626

    Article  CAS  Google Scholar 

  26. Swart, P. L. Long-period grating Michelson refractometric sensor, Meas. Sci. Technol. 2004, 15, 1576–1580

    Article  CAS  Google Scholar 

  27. Tian, Z.; Yam, S. S.; Barnes, J.; Bock, W.; P. Greig; J. M. Fraser; H. P. Loock; R. D. Oleschuk, Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers, IEEE Photon. Technol. Lett. 2008, 20, 626

    Article  Google Scholar 

  28. Tian, Z.; Yam, S. S.; Loock, H., Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber, Opt. Lett. 2008, 33, 1105–1107

    Article  CAS  Google Scholar 

  29. Villatoro, J.; Monzón-Hernández, D., Low-cost optical fiber refractive-index sensor based on core diameter mismatch, J. Lightwave Technol. 2006, 24, 1409

    Article  Google Scholar 

  30. Tian, Z.; Yam, S. S.; Loock, H. P., Single-mode fiber refractive index sensor based on core-offset attenuators, IEEE Photon. Technol. Lett. 2008, 20, 1387–1389

    Article  CAS  Google Scholar 

  31. Choi, H. Y.; Kim, M. J.; Lee, B. H., All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber, Opt. Express 2007, 15, 5711–5720

    Article  Google Scholar 

  32. Li, E.; Wang, X.; Zhang, C., Fiber-optic temperature sensor based on interference of selective higher-order modes, Appl. Phys. Lett. 2006, 89, 091119

    Google Scholar 

  33. Kim, Y.; Paek, U.; Lee, B. H., Measurement of refractive-index variation with temperature by use of long-period fiber gratings, Opt. Lett. 2002, 27, 1297–1299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xiao, H., Wei, T. (2009). Miniaturized Optical Fiber Inline Interferometers for Chemical Sensing. In: Fan, X. (eds) Advanced Photonic Structures for Biological and Chemical Detection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98063-8_7

Download citation

Publish with us

Policies and ethics