Skip to main content

Biomolecule-Nanomaterial Interactions: Effect on Biomolecular Structure, Function, and Stability

  • Chapter
  • First Online:
Biological Interactions on Materials Surfaces

Abstract

We have characterized the influence of protein–carbon nanotube interactions on protein structure and function using various techniques such as Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and atomic force microscopy. This structure-based analysis revealed that different proteins interact with nanotubes differentially, consistent with the observed biological activity data. Furthermore, the high degree of surface curvature of the nanoscale support was found to play an important role in stabilizing proteins under denaturing conditions. Along with these fundamental studies, various applications of such highly active and stable nanotube–protein conjugates have been pursued, which include self-cleaning nanobiocomposite films, interfacial biocatalysis in a biphasic medium, and synthesis of nanotube–nanoparticle hybrids, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

alcohol dehydrogenase

AFM:

atomic force microscopy

AGP:

α1-acid glycoprotein

AOT:

Aerosol-OT

BSA:

bovine serum albumin

CALB:

Candida antarctica lipase B

CD:

circular dichroism

CNT:

carbon nanotube

CT:

α-chymotrypsin

d-SBP:

deglycosylated soybean peroxidase

EDC:

N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydrochloride

EDX:

energy dispersive X-ray

FAM:

carboxyfluorescein

FT-IR:

Fourier transform infrared

HOPG:

highly ordered pyrolytic graphite

HRP:

horseradish peroxidase

HSA:

human serum albumin

Lys:

lysozyme

MJL:

Mucor javanicus lipase

MWNT:

multiwalled nanotube

NaDDBS:

sodium dodecylbenzene sulfonate

NHS:

N-hydroxysuccinimide

NIR:

near infrared

PAGE:

polyacrylamide gel electrophoresis

PLL:

poly-l-lysine

PMMA:

poly(methyl methacrylate)

PMSF:

phenylmethansulfonyl fluoride

ROS:

reactive oxygen species

SAM:

self-assembled monolayer

SBP:

soybean peroxidase

SC:

subtilisin Carlsberg

SWNT:

single-walled nanotube

TEM:

transmission electron microscopy

TRY:

trypsin

UV:

ultraviolet

References

  1. Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, et al (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997;101(46):9463–9475.

    Article  CAS  Google Scholar 

  2. Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan HW, et al Electronic structure control of single-walled carbon nanotube functionalization. Science 2003;301(5639):1519–1522.

    Article  CAS  Google Scholar 

  3. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, et al Shape control of CdSe nanocrystals. Nature 2000;404(6773):59–61.

    Article  CAS  Google Scholar 

  4. Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 2004;126(3):739–743.

    Article  CAS  Google Scholar 

  5. Ajayan PM. Nanotubes from carbon. Chem Rev 1999;99(7):1787–1799.

    Article  CAS  Google Scholar 

  6. Zhao YL, Hu LB, Stoddart JF, Gruner G. Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors. Adv Mater 2008;20(10):1910–1915.

    Article  CAS  Google Scholar 

  7. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 2003;3(6):727–730.

    Article  CAS  Google Scholar 

  8. Yan YM, Yehezkeli O, Willner I. Integrated, electrically contacted NAD(P)(+)-dependent enzyme – carbon nanotube electrodes for biosensors and biofuel cell applications. Chem Eur J 2007;13(36):10168–10175.

    Article  CAS  Google Scholar 

  9. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4(6):435–446.

    Article  CAS  Google Scholar 

  10. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538–544.

    Article  CAS  Google Scholar 

  11. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Del Rev 2004;56(11):1649–1659.

    Article  CAS  Google Scholar 

  12. Kane RS, Stroock AD. Nanobiotechnology: Protein-nanomaterial interactions. Biotechnol Progr 2007;23(2):316–319.

    Article  CAS  Google Scholar 

  13. Asuri P, Bale SS, Karajanagi SS, Kane RS. The protein-nanomaterial interface. Curr Opin Biotechnol 2006;17(6):562–568.

    Article  CAS  Google Scholar 

  14. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed Engl 2004;43(45):6042–6108.

    Article  CAS  Google Scholar 

  15. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. J Mat Chem 2008;18(1):17–22.

    Article  CAS  Google Scholar 

  16. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, et al Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2(2):108–113.

    Article  CAS  Google Scholar 

  17. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 2004;20(26):11594–11599.

    Article  CAS  Google Scholar 

  18. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, et al Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 2005;127(12):4388–4396.

    Article  CAS  Google Scholar 

  19. Rege K, Viswanathan G, Zhu GY, Vijayaraghavan A, Ajayan PM, Dordick JS. In vitro transcription and protein translation from carbon nanotube-DNA assemblies. Small 2006;2(6):718–722.

    Article  CAS  Google Scholar 

  20. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, et al Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 2004;43(39):5242–5246.

    Article  CAS  Google Scholar 

  21. Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004 (1):16–17.

    Google Scholar 

  22. Kam NWS, O’Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102(33):11600–11605.

    Article  CAS  Google Scholar 

  23. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, et al Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005;39(5):1378–1383.

    Article  CAS  Google Scholar 

  24. MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 2005;74A(3):489–496.

    Article  CAS  Google Scholar 

  25. Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 2004;4(11):2233–2236.

    Article  CAS  Google Scholar 

  26. Hu H, Ni YC, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004;4(3):507–511.

    Article  CAS  Google Scholar 

  27. Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003;24(11):1877–1887.

    Article  CAS  Google Scholar 

  28. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000;51(3):475–483.

    Article  CAS  Google Scholar 

  29. Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 2001;7(3):291–301.

    Article  CAS  Google Scholar 

  30. Price RL, Haberstroh KM, Webster TJ. Improved osteoblast viability in the presence of smaller nanometre dimensioned carbon fibres. Nanotechnology 2004;15(8):892–900.

    Article  CAS  Google Scholar 

  31. Vedantham G, Sparks HG, Sane SU, Tzannis S, Przybycien TM. A holistic approach for protein secondary structure estimation from infrared spectra in H2O solutions. Anal Biochem 2000;285(1):33–49.

    Article  CAS  Google Scholar 

  32. Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS. Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng 2006;95(5):804–811.

    Article  CAS  Google Scholar 

  33. Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS. Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 2007;23(24):12318–12321.

    Article  CAS  Google Scholar 

  34. Asuri P, Karajanagi SS, Yang HC, Yim TJ, Kane RS, Dordick JS. Increasing protein stability through control of the nanoscale environment. Langmuir 2006;22(13):5833–5836.

    Article  CAS  Google Scholar 

  35. Asuri P, Karajanagi SS, Vertegel AA, Dordick JS, Kane RS. Enhanced stability of enzymes adsorbed onto nanoparticles. J Nanosci Nanotechnol 2007;7(4–5):1675–1678.

    Article  CAS  Google Scholar 

  36. Asuri P, Karajanagi SS, Kane RS, Dordick JS. Polymer-nanotube-enzyme composites as active antifouling films. Small 2007;3(1):50–53.

    Article  CAS  Google Scholar 

  37. Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, et al In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2(1):47–52.

    Article  CAS  Google Scholar 

  38. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100(23):13549–13554.

    Article  CAS  Google Scholar 

  39. Joshi A, Punyani S, Bale SS, Yang HC, Borca-Tasciuc T, Kane RS. Nanotube-assisted protein deactivation. Nat Nanotechnol 2008;3(1):41–45.

    Article  CAS  Google Scholar 

  40. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, et al Transparent, conductive carbon nanotube films. Science 2004;305(5688):1273–1276.

    Article  CAS  Google Scholar 

  41. Davies KJ. Protein damage and degradation by oxygen radicals. I. General aspects. 1987; 262(20):9895–9901.

    CAS  Google Scholar 

  42. Bale SS, Asuri P, Karajanagi SS, Dordick JS, Kane RS. Protein-directed formation of silver nanoparticles on carbon nanotubes. Adv Mater 2007;19(20):3167–3170.

    Article  CAS  Google Scholar 

  43. Asuri P, Karajanagi SS, Dordick JS, Kane RS. Directed assembly of carbon nanotubes at liquid-liquid interfaces: Nanoscale conveyors for interfacial biocatalysis. J Am Chem Soc 2006;128(4):1046–1047.

    Article  CAS  Google Scholar 

  44. Karajanagi SS, Yang HC, Asuri P, Sellitto E, Dordick JS, Kane RS. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 2006;22(4):1392–1395.

    Article  CAS  Google Scholar 

  45. Li YF, Breaker RR. Deoxyribozymes: New players in the ancient game of biocatalysis. Curr Opin Struct Biol 1999;9(3):315–323.

    Article  CAS  Google Scholar 

  46. Liu JW, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 2003;125(22):6642–6643.

    Article  CAS  Google Scholar 

  47. Sando S, Sasaki T, Kanatani K, Aoyama Y. Amplified nucleic acid sensing using programmed self-cleaving DNAzyme. J Am Chem Soc 2003;125(51):15720–15721.

    Article  CAS  Google Scholar 

  48. Yim TJ, Liu JW, Lu Y, Kane RS, Dordick JS. Highly active and stable DNAzyme – Carbon nanotube hybrids. J Am Chem Soc 2005;127(35):12200–12201.

    Article  CAS  Google Scholar 

  49. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 1997;94(9):4262–4266.

    Article  CAS  Google Scholar 

  50. Cotten M, Fu R, Cross TA. Solid-state NMR and hydrogen-deuterium exchange in a bilayer-solubilized peptide: Structural and mechanistic implications. Biophys J 1999;76(3):1179–1189.

    Article  CAS  Google Scholar 

  51. Hoofnagle AN, Resing KA, Ahn NG. Protein analysis by hydrogen exchange mass spectrometry. Ann Rev Biophys Biomol Struct 2003;32:1–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pangule, R.C. et al. (2009). Biomolecule-Nanomaterial Interactions: Effect on Biomolecular Structure, Function, and Stability. In: Puleo, D., Bizios, R. (eds) Biological Interactions on Materials Surfaces. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98161-1_5

Download citation

Publish with us

Policies and ethics