Skip to main content

Responses of E. coli to DNA Damage and Stress

  • Chapter
Biotechnology and Environmental Science

Abstract

Exposure of Escherichia coli to agents that damage DNA or interfere with DNA replication results in the induction of the SOS response. A number of chromosomal genes that are repressed by the LexA protein are transcribed at higher levels and various lysogenic bacteriophage are induced. The RecA protein becomes activated by binding to some intracellular inducing signal, probably single-stranded DNA and then mediates proteolytic cleavage of LexA and bacteriophage repressors by facilitating an otherwise latent capacity of these molecules to autodigest. The products of the SOS-regulated operon umuDC axe required for most UV and chemical mutagenesis. We have shown that the UmuD protein shares homology with the carboxyl-terminal domains of LexA and several bacteriophage repressors and is activated for its role in mutagenesis by a RecA-mediated proteolytic event. Thus the regulation of umuD involves a transcriptional derepression and a posttranslational activation that are mechanistically and evolutionary related. A set of missense mutants of umuD was isolated and shown to encode mutant UmuD proteins that are deficient in RecA-mediated cleavage in vivo but which can be partially cleaved at a higher UV dose. Most of these mutations are dominant to umuD* with respect to UV mutagenesis yet do not interfere with SOS induction. Although both UmuD and UmuD’ form homodimers, we have found evidence that they preferentially form heterodimers. These studies of umuD have suggested a role for intact UmuD in the modulation of SOS mutagenesis. Other genetic studies have indicated that the RecA protein plays a third role in mutagenesis besides mediating the cleavage of LexA and UmuD. In addition, we have observed that efficiency of UV mutagenesis is greatly reduced by mutations affecting the groESand groEL heat-shockgenes. These genes encode proteins that function as molecular chaperones which mediate protein folding and protein-protein interaction. It seems possible that they may play a role in the proper assembly of a protein complex required for SOS mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bagg, A., Kenyon, C. J., & Walker, G.C. (1981) Proc. Natl. Acad. Sci. USA 78,5749–5753.

    Article  PubMed  CAS  Google Scholar 

  2. Bates, H., Randall, S.K., Rayssiguier, C, Bridges, B. A., Goodman, M. F. and Radman, M. (1989) J. Bacteriol. 171, 2480–2484.

    PubMed  CAS  Google Scholar 

  3. Battista, J.R., Nohmi, T., Donnelly, C.E. and Walker, G.C. Role of UmuD and UmuC in UV and Chemical Mutagenesis. In: “Mechanisms and Consequences of DNA Damage Processing”, (Eds.) E.C. Friedberg, P.C. Hanawalt, pp455–459, Alan R. Liss, Inc., New York, (1988a).

    Google Scholar 

  4. Battista, J.R., Nohmi, T., Donnelly, C.E., and Walker, G.C. (1989) Amino Acid Similarities to Other Proteins Offer Insights Into Roles of UmuD and UmuC In Mutagenesis. Genome 31, 594–596.

    PubMed  CAS  Google Scholar 

  5. Battista, J. R., Ohta, T., Nohmi, T., Sun, W., and Walker, G.C. (1990) Proc. Natl. Acad, Sci. USA 87, 7190–7194.

    Article  CAS  Google Scholar 

  6. Bonner, C. A., Randall, S. K., Rayssiguier, C., Radman, M., Eritja, R., Kaplan, B.E., McEntee, K. and Goodman, M.R. (1988) J. Biol. Chem. 263, 18946–18952.

    PubMed  CAS  Google Scholar 

  7. Bridges, B.A., & Mottershead, R.P. (1978) Mol. Gen. Genet. 162, 35–41.

    Article  PubMed  CAS  Google Scholar 

  8. Bridges, B. A. & Woodgate, R. (1984) Mol. Gen. Genet. 196 364–366.

    Article  PubMed  CAS  Google Scholar 

  9. Bridges, B. A. & Woodgate, R. (1985) Proc. Natl. Acad. Sci USA 82, 4193–4197.

    Article  PubMed  CAS  Google Scholar 

  10. Burckhardt, S. E., Woodgate, R., Scheuermann, R. H., & Echols, H. (1988) Proc. Natl. Acad. Sci. USA 85, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  11. Cupido, M.(1983) Mutat. Res. 109, 1–11.

    Google Scholar 

  12. Defais, M., Caillet-Fauquet, P., Fox, M. S., & Radman, M. (1976) Mol. Gen. Genet. 148, 125–130.

    Article  PubMed  CAS  Google Scholar 

  13. Donnelly, C, and Walker, G.C. (1989) J. Bacteriol. 171, 6117–6125.

    PubMed  CAS  Google Scholar 

  14. Dutreix, M., Moreau, P. L, Bailone, A., Galibert, F., Battista, J. R., Walker, G. C. and Devoret, R. (1989) J. Bacteriol. 171, 2415–2423.

    PubMed  CAS  Google Scholar 

  15. Eguchi, Y., Ogawa, T., & Ogawa, H. (1988) J. Molec. Biol. 202, 565–574.

    Article  PubMed  CAS  Google Scholar 

  16. Elledge, S.J. & Walker, G.C. (1983) J. Molec. Biol. 164, 175–192.

    Article  PubMed  CAS  Google Scholar 

  17. Elledge, S.J. & Walker, G.C. (1983) J. Bacteriol. 155, 1306–1315.

    PubMed  CAS  Google Scholar 

  18. Ennis, D.G., Ossanna, N., and Mount, D.W. (1989) J. Bacteriol. 171, 2533–2541.

    PubMed  CAS  Google Scholar 

  19. Fersht, A. R. & Knill-Jones, J.W. (1983) J. Molec. Biol. 165, 669–682.

    Article  PubMed  CAS  Google Scholar 

  20. Foster, P.L., Sullivan, A.D., & Franklin, S. B. (1989) J. Bacteriol. 171, 3144–3151.

    PubMed  CAS  Google Scholar 

  21. Gimble, F.S., and Sauer, R.T. (1986) J. Molec. Biol. 192, 39–47.

    Article  PubMed  CAS  Google Scholar 

  22. Gimble, F.S., and Sauer, R.T. (1989) J. Molec. Biol. 206, 29–39.

    Article  PubMed  CAS  Google Scholar 

  23. Hagensee, M.E., Timme, T., Bryan, S., & Moses, R. (1987) Proc. Natl. Acad. Sci. USA 84, 4149–4199.

    Article  Google Scholar 

  24. Hevroni, D. and Livneh, Z. (1988) J. Biol. Chem. 85, 5046–5050.

    CAS  Google Scholar 

  25. Hunkapiller, M. W., Smallcombe, S. H., Whitaker, D. R., and Richards, J. H.(1973) Biochemistry 12, 4732.

    Article  PubMed  CAS  Google Scholar 

  26. Jonczyk, P., Fijalkowska, I., & Ciesla, Z. (1988) Proc. Natl. Acad. Sci. USA 85, 9124–9127.

    Article  PubMed  CAS  Google Scholar 

  27. Kato, T. & Shinoura, Y. (1977) Mol. Gen. Genet. 156, 121–131.

    PubMed  CAS  Google Scholar 

  28. Kitagawa, Y., Akaboshi, E., Shinagawa, H., Horii, T., Ogawa, H. & Kato, T. (1985) Proc. Natl. Acad. Sci. USA 82, 4336–4340.

    Article  PubMed  CAS  Google Scholar 

  29. Lackey, D., Krauss, S.W., & Linn, S. (1982) Proc. Natl. Acad Sci. USA 79, 330–334.

    Article  PubMed  CAS  Google Scholar 

  30. Lin, L.-L. & Little, J.W. (1988) J. Bacteriol. 170, 2163–2173.

    PubMed  CAS  Google Scholar 

  31. Little, J.W. (1984) Proc. Natl. Acad. Sci. USA 81, 1375–1379.

    Article  PubMed  CAS  Google Scholar 

  32. Livneh, Z. (1986) J. Biol. Chem. 261, 9526–9533.

    PubMed  CAS  Google Scholar 

  33. Lu, C, Scheuermann, H. & Echols, H. (1986) Proc. Natl. Acad. Sci. USA 83, 619–623.

    Article  PubMed  CAS  Google Scholar 

  34. Mace, D. C. & Alberts, B. M. (1984) J. Molec. Biol. 177, 279–293.

    Article  PubMed  CAS  Google Scholar 

  35. Marsh, L & Walker, G.C.(1985) J. Bacteriol. 162, 155–161.

    PubMed  CAS  Google Scholar 

  36. McCann, J., Choi, E., Yamasaki, E., Ames, B.N. (1975) Proc. Natl. Acad,. Sci. USA 72, 5135–5139.

    Article  CAS  Google Scholar 

  37. Miller, (1983) Ann. Rev. Genet. 12, 215–238.

    Article  Google Scholar 

  38. Molina, A. M., Babulri, N., Tamaro, M. Venturini, S. & Monti-Bragadin, C. (1979) FEMS Microbiol. Lett. 5, 33–37.

    Article  Google Scholar 

  39. Nohmi, T., Battista, J. R., Dodson, L. A. and Walker, G.C. (1988) Proc. Natl. Acad. Sci. USA 82,4331–4335.

    Google Scholar 

  40. Perry, K. L, Elledge, S. J., Mitchell, B. B., Marsh, L & Walker, G. C. (1985) Proc. Natl. Acad. Sci. 82,4331–4335.

    Article  PubMed  CAS  Google Scholar 

  41. Perry, K. L. & Walker, G. C. (1982) Nature (London) 300, 278–281.

    Article  CAS  Google Scholar 

  42. Radman, M. (1974) In Molec. and Environ. Aspects of Mutagen, edited by L. Prakash, F. Sherman, M. Miller, C. Lawrence, and H. W. Tabor (Springfield, IL., Charles C. Thomas, Pub), 128–142.

    Google Scholar 

  43. Sassanfar, M., & Roberts, J. W. (1990) J. Molec. Biol. 212, 79–96.

    Article  PubMed  CAS  Google Scholar 

  44. Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M. & Pabo, C. O. (1982) Nature 298, 447–451.

    Article  PubMed  CAS  Google Scholar 

  45. Sedgwick, S. G. & Goodwin, P. A. (1985) Proc. Natl. Acad. Sci USA 82, 4172–4176.

    Article  PubMed  CAS  Google Scholar 

  46. Shinagawa, H., Iwasaki, H., Kato, T., & Nakata, A. (1988) Proc. Natl. Acad. Sci. USA 85, 1806–1810.

    Article  PubMed  CAS  Google Scholar 

  47. Slilaty, S. N. & Little, J. W. (1987) Proc. Natl. Acad. Sci. USA 84, 3987–3991.

    Article  PubMed  CAS  Google Scholar 

  48. Steinborn, G. (1978) Mol. Gen. Genet. 165, 87–93.

    Article  PubMed  CAS  Google Scholar 

  49. Strike, P. & Lodwick, D. (1988) J. Cell. Biochem. (Suppl. 12A, 326.

    Google Scholar 

  50. Strike, P., & Lodwick, D. (1987) J. Cell. Sci. 10(Suppl. 6), 303–321.

    Google Scholar 

  51. Walker, G. C. (1984) Microbiol. Rev. 48, 60–93.

    PubMed  CAS  Google Scholar 

  52. Walker, G. C. (1985) Ann. Rev. Biochem. 54, 425–457.

    Article  PubMed  CAS  Google Scholar 

  53. Weigle, J. J. (1953) Proc. Natl. Acad. Sci. USA 39, 628–636.

    Article  PubMed  CAS  Google Scholar 

  54. Witkin, E. M. (1969) Ann. Rev. Microbiol. 23, 487–514.

    Article  CAS  Google Scholar 

  55. Witkin, E. M. (1975) Mol. Gen. Genet. 142, 87–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Ohta, T., Battista, J.R., Donnelly, C.E., Walker, G.C. (1992). Responses of E. coli to DNA Damage and Stress. In: Mongkolsuk, S., Lovett, P.S., Trempy, J.E. (eds) Biotechnology and Environmental Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-32386-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-32386-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44352-7

  • Online ISBN: 978-0-585-32386-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics