Skip to main content
  • 219 Accesses

Abstract

The wizardry necessary for the management of existing nonselective drug regimens recalls the dances, chants and songs practiced by the Babylonians in accord with their concepts of numerology, astrology and fetishism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kahan BD. Role of cyclosporin: present and future. Transplant Proc. 1994;26:3082–7.

    PubMed  CAS  Google Scholar 

  2. Taliaferro WH, Taliaferro LG. Effects of x-rays on immunity: a review. J Immunol. 1951;66:181.

    PubMed  CAS  Google Scholar 

  3. Germain RN. MHC-dependent antigen processing and peptide presentation: providing ligands tor T lymphocyte activation. Cell. 1494;76:287–9.

    Google Scholar 

  4. Hall BM. Transplantation overview: cells mediating allograft rejection. Transplantation. 1991;51:1141–51.

    PubMed  CAS  Google Scholar 

  5. Parties JR. Molecular biology and function of CD-4 and CD-8. Adv Immunol. 1989;44:265–311.

    Google Scholar 

  6. Rose ML, Yacoub M. Immunology of heart and lung transplantation. Sevenoaks: Edward Arnold; 1993:3–21

    Google Scholar 

  7. Gracie JA, Sarawar SR, Bolton EM et al. Renal allograft rejection in CO4+ T cell reconstituted athymic nude rats. The origin of CD4+ and CD8+ graft infiltrating cells. Transplantation. 1990;50:996.

    PubMed  CAS  Google Scholar 

  8. Moller E. Cell interactions and cytokines in transplantation immunity. Transplant Proc. 1995;27:24–7.

    PubMed  CAS  Google Scholar 

  9. Gunman RD, Lindquist RR, Oekner SA. Renal transplantation in the inbred rat. Transplantation. 1969;8:472–84.

    Google Scholar 

  10. Austyn JM, Sleinman KM. The passenger leukocyte a fresh look. Transplant Rev. 1988;2:139–76.

    Google Scholar 

  11. Sherman LA, Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol. 1993;11:385–402.

    PubMed  CAS  Google Scholar 

  12. Clark EA, Lcdbetter JA. How B and T cells talk to each other. Nature. 1994;367:425–8.

    PubMed  CAS  Google Scholar 

  13. Krensky AM, Weiss A. Crabtrec G et al. T lymphocyte antigen interactions in transplant rejection. N Engl J Med. 1990;322:510–17.

    PubMed  CAS  Google Scholar 

  14. Ohashi PS, Oehen S, Burki K et al. Ablation of tolerance and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. 1991;65:305–12.

    PubMed  CAS  Google Scholar 

  15. Superdock KR, Helderman JH. Immunosuppressive drugs and their effects. Semin Respir Infect. 1993;8:152–9.

    PubMed  CAS  Google Scholar 

  16. Chan AC, Iwashima M, Turck CW et al. ZAP-70: A 70 kd protein tyrosine kinase that associates with the TcR ζ chain. Cell. 1992;71:649–62.

    PubMed  CAS  Google Scholar 

  17. Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin 2 production and immunotherapy. Cell. 1992;71:1065–8.

    PubMed  CAS  Google Scholar 

  18. Linsley PS, Brady W, Urnes M et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991; 174:561–9.

    PubMed  CAS  Google Scholar 

  19. Thompson CB, Lindsten T, Ledbetter JA et al. CD28 activation pathway regulates the production of multiple T cell derived lymphokines/cytokines. Proc Natl Acad Sci USA. 1989;86:1333–7.

    PubMed  CAS  Google Scholar 

  20. Pober JS, Cotran RS. The role of endothelial cells in inflammation. Transplantation. 1990;48:537–44.

    Google Scholar 

  21. Suthamhiran M, Strom TB. Renal transplantation. N Engl J Med. 1994;331:365–76.

    Google Scholar 

  22. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425–34.

    PubMed  CAS  Google Scholar 

  23. May MJ, Ager A. ICAM-1 independent lymphocyte transmigration across high endothelium: differential upregulalion by interferon γ, tumor necrosis factor α, and interleukin Iβ. Eur J Immunol. 1992;22:219–26.

    PubMed  CAS  Google Scholar 

  24. Lemstrom K, Koskinen P, and Hayry P. Induction of adhesion molecules on the endothelia of rejecting cardiac allografts. J Heart Lung Transplant. 1995; 14:205–13.

    PubMed  CAS  Google Scholar 

  25. Jeffrey JR. Cyclosporine analogues. Clin Biochem. 1991;24:15–21.

    Google Scholar 

  26. von Wartburg A, Traber R. Chemistry of the natural cyclosporin metabolites. Prog Allergy. 1986;38:28–45.

    Google Scholar 

  27. Caspi RR, McAllister CG, Gery I et al. Differential effects of cyclosporins A and G on functional activation of T-helper lymphocyte line mediating experimental autoimmune uveoretinitis. Cell Immunol. 1988;113:350–60.

    PubMed  CAS  Google Scholar 

  28. McKenna RM, Szturm K, Jeffrey JR et al. Inhibition of cytokine production by eyclosporin A and G. Transplantation. 1989;47:343–8.

    PubMed  CAS  Google Scholar 

  29. Woodrow M, Clipstone NA, Cantrell DA et al. p21 ras and calcineurin synergise to regulate nuclear factor of activated T cells. J Exp Med. 1993; 178:1517–22.

    PubMed  CAS  Google Scholar 

  30. O’kccfe SJ, Tamura J, Kincaid RL et al. FK506 and CsA sensitive activation of interleukin-2 promoter by calcineurin. Nature. 1992;357;692–4.

    Google Scholar 

  31. Walsh CT, Zydowsky, Mckeon FD et al. CsA, the cyclophilin class of peptidylprolyl isomerases and blockade of T cell transduction. J Biol Chem. 1992;267:13115–18.

    PubMed  CAS  Google Scholar 

  32. Crabtree G. Contingent genetic regulatory events in T lymphocyte activation. Science. 1989;243:355–61.

    PubMed  CAS  Google Scholar 

  33. Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in T lymphocyte activation. Nature. 1992;357:695–7.

    PubMed  CAS  Google Scholar 

  34. Sigal NH, Dumonl KJ. CsA, FK506, Rapa — pharmacological probes of lymphocyte signal transduction. Annu Rev Immunol. 1992;10:519–60.

    PubMed  CAS  Google Scholar 

  35. Bierer BE. Advances in therapeutic immunosuppression biology, molecular action and clinical implication. Curr Opin Hematol. 1993;1:149–59.

    Google Scholar 

  36. Mangold JB, Schran HF, Yatscoff RW. Biotransformation of cyclosporin G in comparison to eyclosporin A. Transplant Proc. 1994;26:3013–15.

    PubMed  CAS  Google Scholar 

  37. Copeland KR, Yatscoff RW. The isolation, structural characterization and immunosuppressive activity of CsG (Nva2 — eyclosporin) and metabolites. Ther Drug Monit. 1991;13:281–8.

    PubMed  CAS  Google Scholar 

  38. Yatscoff RW, Honcharik N, Lukowski M et al. Distribution of cyclosporin G in blood and plasma. Clin Chem. 1993;39:213–17.

    PubMed  CAS  Google Scholar 

  39. Borel JF. The cyclosporins. Transplant Proc. 1989;21:810.

    PubMed  CAS  Google Scholar 

  40. Hiestand PC, Gunn HC, Gale JM et al. Comparison of the pharmacological profiles of cyclosporin, (Nva2) — cyclosporin and dihydrocyclosporin. Immunology. 1985;55:249.

    PubMed  CAS  Google Scholar 

  41. Hiestand PC, Traber R, Borel JF. Pharmacological studies with Norvaline cyclosporin in comparison with cyclosporin A — a summary. Transplant Proc. 1994;26:2999–3001.

    PubMed  CAS  Google Scholar 

  42. Grant D, Zhong R, Stiller C et al. A comparison of cyclosporin A and Nva-2 cyclosporin (cyclosporin G) in rat renal allograft model. Transplantation. 1987;44:9–12.

    PubMed  CAS  Google Scholar 

  43. Hoyt EG, Billingham ME, Masek MA et al. Assessment of cyclosporin G, a new immunosuppressive agent. J Heart Transplant. 1985;4:616.

    Google Scholar 

  44. Hagberg RC, Hoyt EG, Billingham MF et al. Comparison of cyclosporin A and G with and without azathioprine regarding immunosuppressive efficacy, toxicity and pharmacokinetics in Lewis rats. J Heart Transplant. 1988;7:359–69.

    PubMed  CAS  Google Scholar 

  45. Calne RY, White DJG, Thiru S et al. Cyclosporinc G: immunosuppressive effects in dogs with renal allografts. (Letter) Lancet. 1985;1:1342.

    PubMed  CAS  Google Scholar 

  46. White DJG, Calne RY, Collier St J et al. Is cyclosporin G more or less immunosuppressive than cyclosporin A? Transplant Proc. 1986;18:1244–5.

    Google Scholar 

  47. Todo S, Porter KA, Kam I et al. Canine liver transplantation under Nva-2 cyclosporin versus cyclosporin. Transplantation. 1986;41:296–300.

    PubMed  CAS  Google Scholar 

  48. Ogunnaikc HO, Starkey TD, Baldwin JC. An assessment of Nva-cyclosporin in primate cardiac transplantation. Transplantation. 1987;43:13–17.

    Google Scholar 

  49. Hiestand PC, Gubler HU. In: Cyclosporins — immunopharmacological properties of natural cyclosporins. Bray MA, Morley J. editors. Handbook of experimental pharmacology. Vol. 85. Berlin: Springer-Verlag; 1988:487.

    Google Scholar 

  50. Takagishi K, Yamamoto M, Miyahara H el al. Comparative study of effects of cyclosporins A and G on collagen arthritis in mice. Agents Actions. 1992;37:284–9.

    PubMed  CAS  Google Scholar 

  51. Kawashima H, Okumura A, Fujno Y et al. The effects of cyclosporin G and D treatment on experimental autoimmune uveoretinitis in rats. Acta Soc Ophthalmol Jpn. 1987;91:940–50.

    CAS  Google Scholar 

  52. Nussenblatt RB, Caspi RR, Dinning WJ et al. A comparison of the effectiveness of cyclosporin A, D. and G in the treatment of experimental autoimmune uveitis in rats. J Immunopharmacol. 1986;8:427–35.

    PubMed  CAS  Google Scholar 

  53. Prop J, Hoyt EG, Jamieson SW et al. Nva-cyclosporin — less potent than CsA in rats with lung and heart transplants. Transplantation. 1993;55:623–6.

    Google Scholar 

  54. Kaplan B, Feutren G, Schran H et al. OG 37-325 in transplantation: experimental studies. In: Przepiorka D. Sollinger HW, eds. Recent developments in transplantation medicine Vol 1: Newer Immunosuppressive drugs. Glenview, IL: Physicians and Scientists Publishing Co. 1994:77–91.

    Google Scholar 

  55. Yatscoff RW, Rosano TG, Bowers LD. The clinical significance of cyclosporin metabolites. Clin Biochem. 1991;24:23–35.

    PubMed  CAS  Google Scholar 

  56. Huser B, Thiel O, Obcrholzer M et al. The efficacy and tolerability of cyclosporin G in human kidney transplant recipients. Transplantation. 1992;54:65–9.

    PubMed  CAS  Google Scholar 

  57. Kino T, Hatanaka H, Hashimoto M et al. FK 506, a novel immunosuppressant isolated from strcptomyces. I. Fermentation, isolation and physicochemical and biological characteristics. J Antibiotics. 1987;40:1249–55.

    CAS  Google Scholar 

  58. Przepiorka D. Tacrolimus: preclinical and clinical experience. In: Przepiorka D. Sotlinger HW, eds. Recent developments in transplantation medicine Vol 1: Newer Immunosuppressive drugs. Glenview, IL: Physicians and Scientists Publishing Co. 1994:29–50.

    Google Scholar 

  59. Tai P-KK, Albers MW, Chang H et al. Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science. 1992;256:1315–18.

    PubMed  CAS  Google Scholar 

  60. Ning YM, Sanchez ER. Potcntiation of glucocorticoid receptor-mediated gene expression by the immunophilin ligands FK506 and rapamycin. J Biol Chem. 1993;268:6073–6.

    PubMed  CAS  Google Scholar 

  61. Jin YJ, Burakoff SJ. The 25-kDa FK506-binding protein is localized in the nucleus and associates with casein kinase II and nucleolin. Proc Natl Acad Sci USA. 1993;90:7769–73.

    PubMed  CAS  Google Scholar 

  62. Nigam SK, Jin YJ, Jin MJ et al. Localization of the FK506-binding protein. FKBP 13, to the lumen of the endoplasmic reticulum. Biochem J. 1993;294:511–15.

    PubMed  CAS  Google Scholar 

  63. DePaulis A, Cirillo R, Ciccarelli A et al. FK506, a potent novel inhibitor of the release of proinflammatory mediator from human FcεRI+ cells. J Immunol. 1991;146:2374–81.

    CAS  Google Scholar 

  64. Bram RJ, Hung DT, Martin PK et al. Identitication of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular localization. Mol Cell Biol. 1993;13:4760–9.

    PubMed  CAS  Google Scholar 

  65. Bierer BE, Somers PK, Wandless TJ et al. Probing immunosuppressant action with a nonnatural immunophilin ligand. Science. 1990;250:556–9.

    PubMed  CAS  Google Scholar 

  66. Clipstone NA, Crabtree GR. Calcineurin is a key signaling enzyme in T lymphocyte activation and the target of the immunosuppressive drugs cyclosporin A and FK506. Ann NY Acad Sci. 1993;696:20–30.

    PubMed  CAS  Google Scholar 

  67. McCaffrey PG, Perrino BA, Soderling TR et al. NF-ATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs. J Biol Chem. 1993;268:3747–52.

    PubMed  CAS  Google Scholar 

  68. Ullman KS, Northop JP, Verwicj CL et al. Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: The missing link. Annu Rev Immunol. 1990;8:421–52.

    PubMed  CAS  Google Scholar 

  69. Liu J, Albers MW, Wandless TJ et al. Inhibition of T cell signaling by immunophilin — ligand complexes correlates with loss of calcineurin phosphalase activity. Biochemistry. 1992;31:3896–901.

    PubMed  CAS  Google Scholar 

  70. Tocci MJ, Matkovich DA, Collier KA et al. The immunosuppressant FK 506 selectively inhibits the expression of early T cell activation genes. J Immunol. 1989;143:718–26.

    PubMed  CAS  Google Scholar 

  71. Fujisawa. Prograf — a review of its immunosuppressive effects. Deerfield. IL.: Fujisawa USA; 1994:7–10.

    Google Scholar 

  72. Venkataramanan R, Jain A, Warty VS et al. Pharmacokinetics of FK 506 in transplant patients. Transplant Proc. 1991;23:2736–40.

    PubMed  CAS  Google Scholar 

  73. Pickoszewski W, Jusko WJ. Plasma protein binding of tacrolimus in humans. J Pharm Sci. 1993;82:340–1.

    Google Scholar 

  74. Christians U, Braun F, and Schmidt M et al. Specific and sensitive measurement of FK506 and its metabolites in blood and urine of liver-graft recipients. Clin Chem. 1992;38:2025–32.

    PubMed  CAS  Google Scholar 

  75. Abu-Elmagd K, Fung JJ, and Alessiani M et al. The effect of graft function on FK506 plasma levels, dosages and renal function with particular reference to the liver. Transplantation. 1991;52:71–7.

    PubMed  CAS  Google Scholar 

  76. Metcalfe SM, Richard FM. Cyclosporin, FK-506 and rapamycin. Some effects on early activation events in serum-free, mitogen-stimulaled mouse spleen cells, Transplantation. 1990;49:798–802.

    PubMed  CAS  Google Scholar 

  77. Wang SC, Morel PA, Wang Q et al. A dual mechanism of immunosuppression by FK-506. Differential suppression of IL-4 and IL-10 levels in T helper 2 cells. Transplantation. 1993;56:978–85.

    PubMed  CAS  Google Scholar 

  78. Ochiai T, Sakamoto K, Nagata M et al. Studies on FK 506 in experimental organ transplantation. Transplant Proc. 1988;20(Suppl. I):209–14.

    PubMed  CAS  Google Scholar 

  79. Katayama Y, Takao M, Onoda K et al. Immunosuppressive effects of FK 506 and 15-deoxyspergualin in rat lung transplantation. Transplant Proc. 1991;23:349–53.

    PubMed  CAS  Google Scholar 

  80. Murase N, Kim DG. Todo S et al. Induction of liver, heart, and multivisceral graft acceptance with a short course of FK 506. Transplant Proc. 1990;22:74–5.

    PubMed  CAS  Google Scholar 

  81. Golto S, Stepkowski SM, Kuhan BD. Effect of FK 506 and cyclosporin on heart allograft survival in rats. Transplant Proc. 1991;23:529–30.

    Google Scholar 

  82. Jiang H, Takahara S, Kyo M et al. Effect of FK 506 on heart allograft survival in the highly sensitized recipient rats as compared with cyclosporin and 15-deoxyspergualin. Eur Surg Res. 1991;23:201–5.

    PubMed  CAS  Google Scholar 

  83. Murase N, Kim DG, Todo S et al. Suppression of allograft rejection with FK 506. I. Prolonged cardiac und liver survival in rats following short course therapy. Transplantation. 1990;50:186–9.

    PubMed  CAS  Google Scholar 

  84. Arai K, Hotokebuchi T, Miyahara H. Prolonged limb allograft survival with short term treatment with FK 506 in rats. Transplant Proc. 1989;21:3191–3.

    PubMed  CAS  Google Scholar 

  85. Ochiai T, Nakajima K, Sakamoto K. Comparative studies on the immunosuppressive activity of FK 506, 15-deoxyspergualin. and cyclosporin. Transplant Proc. 1989;21:829–32.

    PubMed  CAS  Google Scholar 

  86. First MR. Renal transplantation for the nephrologist: new immunosuppressive drugs. Am J Kidney Dis. 1991;19:3–9.

    Google Scholar 

  87. Collier DSJ, Calne SR, Thiru P et al. FK 506 in experimental renal allografls. Transplant Proc. 1987;19:93–7.

    Google Scholar 

  88. Yokota K, Takashima T, Sato K et al. Comparative studies of FK 506 and cyclosporin in canine ortholopic hepatic allograft survival. Transplant Proc. 1989;21:1066–8.

    PubMed  CAS  Google Scholar 

  89. Sato K, Yamagishi K, Nakayama Y et al. Pancrealicoduodenal allotransplantation with cyclosporin and FK 506. Transplant Proc. 1989;21:1074–5.

    PubMed  CAS  Google Scholar 

  90. Flavin T, Ivens K, Wang J et al. Initial experience with FK 506 as an immunosuppressant for non-human primate recipients of cardiac allografts. Transplant Proc. 1991;23:531–2.

    PubMed  CAS  Google Scholar 

  91. Hildebrandt A, Meiser B, Human P et al. FK 506: short and long term treatment after cardiac transplantation in non-human primates. Transplant Proc. 1991;23:509–10.

    PubMed  CAS  Google Scholar 

  92. Miyahara H, Hotokebuchi T, Arita C et al. Comparative studies on the effects of FK506 and cyclosporin A on passively transferred collagen-induced arthritis in rats. Clin Immuno Immunopathol. 1991;60:278–88.

    CAS  Google Scholar 

  93. Kawashima H, Fujino Y, Mochizuki M. Antigen-specific suppressor cells induced by FK506 in experimental autoimmune uveoretinitis in rat. Invest Ophthalmol Vis Sci. 1990:31,(12):2500–7.

    PubMed  CAS  Google Scholar 

  94. Hara S, Fukalsu A, Suzuki N et al. The effects of a new immunosuppressive agent, FK506, on the glomerular injury in rats with accelerated nephrotoxic serum glomeruloncphritis. Clin Immunol Immunopathol. 1990;57:351–62.

    PubMed  CAS  Google Scholar 

  95. Murase N, Lieberman I. Nalesnik MA et al. Effect of FK506 on spontaneous diabetes in BB rats. Diabetes. 1990;39:1584–6.

    PubMed  CAS  Google Scholar 

  96. Ueno M, Nakajima Y, Segawa M et al. Immunosuppressive effect in combination therapy of cyclosporin A, FK506 and 15-deoxyspergualin on pancreatic islet xenotransplantation. Transplant Proc. 1992;24:638–40.

    PubMed  CAS  Google Scholar 

  97. Murase N, Starzl TE, Demetris AJ et al. Hamster-to-rat heart and liver xenotransplantation with FK506 plus antiproliferative drugs. Transplantation. 1993;55:701–8.

    PubMed  CAS  Google Scholar 

  98. Fung JJ, Starzl TE. FK 506 in solid organ transplantation. Transplant Proc. 1994;26:3017–20.

    PubMed  CAS  Google Scholar 

  99. U.S. Multicenter FK 506 Liver Study Group. Comparison of Tacrolimus (FK 506) and CsA for immunosuppression in liver transplantation. N Engl J Med. 1994;331:1110–15.

    Google Scholar 

  100. European FK 506 Multicenter Liver Study Group. Randomized trial comparing tactolimus and CsA in prevention of liver allograft rejection. Lancet. 1994;344:423–8.

    Google Scholar 

  101. Fung JJ, Todo S. and Abu Elmagd K et al. Randomized trial in primary liver transplantation under immunosuppression with FK 506 or cyclosporin. Transplant Proc. 1993;25:1130.

    PubMed  CAS  Google Scholar 

  102. Shapiro R, Jordan ML, Scanllehury V et al. FK 506 in clinical kidney transplantation. Transplant Proc. 1993;25:669–72.

    PubMed  CAS  Google Scholar 

  103. Armitage JM, Kormos RL, and Morita S et al. Clinical trial of FK 506 immunosuppression in adult cardiac transplantation. Ann Thorac Surg. 1992;54:205–11.

    PubMed  CAS  Google Scholar 

  104. Griffith BP, Bando K, Hardesty RL et al. Prospective randomized trial of FK506 versus cyclosporin after human pulmonary transplantation. Transplantation. 1994;57:848–51.

    PubMed  CAS  Google Scholar 

  105. Fay JW, Weisdorf DJ, Wingard JR et al. FK506 monotherapy for prevention of graft versus host disease after histocompatible sibling marrow transplantation. Blood. 1992;80(Suppl. I): 135a.

    Google Scholar 

  106. Fay JW, Collins RH, Pineiro A et al. FK506 to prevent graft-versus-host disease iGVHDi alter allogeneic marrow transplantation (AMI) using unrelated marrow donors (UMD) — a phase II stud). Blood. 1993;821(Suppl. I):420a.

    Google Scholar 

  107. Mochizuki M, Masuda K, Sakane T et al. A clinical trial of FK 506 in refractory uveitis. Am J Ophthalmol. 1993;115:763–9.

    PubMed  CAS  Google Scholar 

  108. Jagasothy BV, Ackerman CD, Todo S et al. FK 506 — A new therapeutic agent for severe recalcitrant psoriasis. Arch Dermatol. 1992;128:781–5.

    Google Scholar 

  109. Van Thiel DH, Wright H, Carroll P et al. FK 506 in the treatment of autoimmune chronic active hepatitis: preliminary results. Am J Gastroenterol. 1992;87:1309.

    Google Scholar 

  110. Reyes J. Tzakis A, Cireen M et al. Posttransplant lymphoproliferative disorders under primary FK 506 immunosuppression. Transplant Proc. 1991;23:3044–6.

    PubMed  CAS  Google Scholar 

  111. Vezina C, Kudelsi A, Sehgal SN, Rupamycin (AY 22989), a new antifungal antibiotic. I. Taxonomy of the producing Streptomycete and isolation of the active principle. J Antibiot. 1975;28:721–6.

    PubMed  CAS  Google Scholar 

  112. Sehgal SN, Baker H. Vezina C, Rapamycin (AY 22989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiol. 1975: 28:727–32.

    CAS  Google Scholar 

  113. Baker H, Sidorowica A, Sehgal SN et al. Rapamycin (AY 22989), a new antifungal antibiotic. III, In vitro and in vivo evaluation. J Antibiot. 1978; 31:539–45.

    PubMed  CAS  Google Scholar 

  114. Singh K, Sun S, Vezina C. Rapamycin (AY 22989), a new antifungal antibiotic. IV. Mechanism of action. J Antibiot. 1979;32:630–45.

    PubMed  CAS  Google Scholar 

  115. Martel RR, Klicius J, Galet S. Inhibition ot the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol. 1977;55:48–51.

    PubMed  CAS  Google Scholar 

  116. Morris RE, Meiser BM. Identification of a new pharmacological action for an old compound. Med Sci Res. 1989;17:609–10.

    CAS  Google Scholar 

  117. Schreiber SL, Liu J, Albers MW et al. Immunophilin-ligand complexes as probes of intracellular signalling pathways. Transplant Proc. 1991;23:2839–44.

    PubMed  CAS  Google Scholar 

  118. Price DJ, Grove JR, Calvo V et al. Rapamycin induced inhibition ol the 70 kilodalton S6 protein kinase. Science. 1992;257:973.

    PubMed  CAS  Google Scholar 

  119. Kuo CJ, Chung J, Fiorentino DF et al. Rapamycin selectively inhibits IL2 activation of p70 S6 kinase. Nature. 1992;358:70.

    PubMed  CAS  Google Scholar 

  120. Chung J, Kuo CJ, Crabtree GR et al. Rapamycin-FKBP specifically blocks growth dependent activation of and signalling by the 70 kd S6 protein kinascs. Cell. 1992;69:1227.

    PubMed  CAS  Google Scholar 

  121. Flanagan WM, Crabtree GR. Rapamycin inhibits p34 cdc2 expression and arrests T lymphocyte proliferation at the G1/S transition. Ann NY Acad Sci. 1993;696:31–7.

    PubMed  CAS  Google Scholar 

  122. Lai JH, Tan TH. CD28 signaling causes down regulation of I kappa B alpha which can be prevented by the immunosuppressant Rapamycin. J Biol Chem. 1994;269:30077–80.

    PubMed  CAS  Google Scholar 

  123. Sehgal SN, Bansbach CC. Rapamycin: in vitro profile of a new immunosuppressive macrolide. Ann NY Acad Sci. 1993;685:58–67.

    PubMed  CAS  Google Scholar 

  124. Honcharik N, Fryer J, Yalscoff R. Pharmacokinetics of Rapamycin: single dose studies in the rabbit. Ther Drug Monit. 1992;14:475–8.

    PubMed  CAS  Google Scholar 

  125. Yatscoff R, LeGatt D, Keenan R et al. Blood distribution of Rapamycin. Transplantation. 1993;56:1137–42.

    Google Scholar 

  126. Yalscoff RW, Faraci C, Bolingbroke P. Measurement of rapamycin in whole blood using reverse phase high performance liquid chromatography. Ther Drug Monit. 1992;14:138–41.

    Google Scholar 

  127. Kahan BD, Chung JY, Sehgal SN. Preclinical evaluation of a new potent immunosuppressive agent, rapamycin. Transplantation. 1991;52:185–91.

    PubMed  CAS  Google Scholar 

  128. Dumont FJ, Staruch MJ, Koprak SL et al. Distinct mechanisms of suppression of murine T cell activation by related macrolides FK506 and rapamycin. J Immunol. 1990;144:251–8.

    PubMed  CAS  Google Scholar 

  129. Kahan BD, Gibbons S, Tejpal N et al. Synergistic interactions of cyclosporin and rapamycin to inhibit immune performances of human peripheral blood lymphocytes in vitro. Transplantation. 1991;51:232–9.

    PubMed  CAS  Google Scholar 

  130. Kay JE, Kromwel L, Doe SEA et al. Inhibition of T and B lymphocyte proliferalion by Rapamycin. Immunology. 1991;72:544–9.

    PubMed  CAS  Google Scholar 

  131. Wicker LS, Boltz RCJ, Matt V et al. Suppression of B cell activation by cyclosporin FK506 and rapamycin. Fur J Immunol. 1990;20:2277–83.

    CAS  Google Scholar 

  132. Kahan BD, Gibbons S, Tejpal N et al. Synergistic effect of the rapamycincyclosporin combination: median effect analysis of in vitro immune performances by human T lymphocytes in PHA. CD3. and NVR proliferative and cytotoxin assays. Transplant Proc. 1991;23:1090–1.

    PubMed  CAS  Google Scholar 

  133. Morris RK, Wu J, Shorthouse R. A study of contrasting effects of cyclosporin. FK506 and rapamycin on suppression of allograft rejection. Transplant Proc. 1990;22:1638.

    PubMed  CAS  Google Scholar 

  134. Morris RK, Meiser BM, Wu J, Shorthouse R. Use of rapamyciri fur the suppression of alloimmune reactions in vivo: schedule dependence, tolerance induction, synergy with cyclosporin and FK506 and effects on host-versus-graft and graftversus-host reactions. Transplant Proc. 1991;23:521–4.

    PubMed  CAS  Google Scholar 

  135. Morris R, Wang J, Gregory C et al. Initial studies of the efficacy und safety of Rapamycin administered to Cynomolgus monkey recipients of heart allografts. J Heart Lung Transpl. 1991;10:182.

    Google Scholar 

  136. Stepkowski SM, Chen H, Daloze P et al. Rapamycin, a potent imnuinosuppressive drug for vascularized heart, kidney and small bowel transplantation in rats. Transplantation. 1991;51:22–6.

    PubMed  CAS  Google Scholar 

  137. Collier DSJ, Calne SR, Thiru S et al. Rapamycin in experimental renal allografts in dogs and pigs. Transplant Proc. 1990;22:1674–5.

    PubMed  CAS  Google Scholar 

  138. Collier DSJ, Calne SR, Pollard SG et al. Rapamycin in experimental renal allografls in primates. Transplant Proc. 1991;23:2246–7.

    PubMed  Google Scholar 

  139. Fabian MC, Lakey JR, Kneteman NM et al. The efficacy and toxicity of Rapamycin in murine islet transplantation. In vitro and in vivo studies. Transplantation. 1993:564(5):1137–42.

    Google Scholar 

  140. Chen HF, Wu J, Luo HY et al. Reversal of ongoing rejection of allografts by Rupamycin, Transplant Proc. 1991;23:2241–2.

    PubMed  Google Scholar 

  141. Gregory CR, Huie P, Billingham MB et al. Rapamycin inhibits arterial intimal thickening caused by both alloimmune and mechanical injury. Its effects on cellular, growth factor and cylokine response in injured vessels. Transplantation. 1993;56:1409–18.

    Google Scholar 

  142. Morris RL, Rapamycin. In: Przepiorka D. Sullinger HW, eds. Recent developments in transplantation medicine Vol I: Newer Immunosuppressive drugs Glenview. IL: Physicians and Scientists Publishing Co. 1994:51–74.

    Google Scholar 

  143. Roberge FG, Xu D, Chan C et al. Treatment of auto immune uveoretinitis in the rat with rapamycin, and inhibitor of lymphocyte growth signal transduction. Curr Eye Res. 1993;12:197–203.

    PubMed  CAS  Google Scholar 

  144. Carlson RP, Bacder WL, Caccesc RG et al. Effects of orally administered rapamycin in animal models of arthritis and other autoimmune diseases. Ann NY Acad Sci. 1993;685:86–113.

    PubMed  CAS  Google Scholar 

  145. Whiting PH, Adam J, Woo J et al. The effect of rapamycin on renal function in the rat: acomparative study with cyclosporin. Toxicol Lett. 1991;158:169–79.

    Google Scholar 

  146. Whiting PH, Woo J, Adam BR et al. Toxicity of Rapamycin — a comparative and combination study with cyclosporin at immunotherapeutic doses in the rat. Transplantation. 1991;52:203–8.

    PubMed  CAS  Google Scholar 

  147. Bartlett RR, Schleyerbach R. Immunopharmacological profile of a novel isoxazol derivative, HWA 486, with potential antirheumatic activity. I. Disease modifying action on adjuvant arthritis of the rat. Int J Immunopharmacol. 1985;7:7–18.

    PubMed  CAS  Google Scholar 

  148. Klausner RD, Samuelson LE. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991;64:875–8.

    PubMed  CAS  Google Scholar 

  149. Minami Y, Takeshi K, Miyazaki T et al. The IL-2 receptor complex: Its structure, function and target genes. Annu Rev Immunol. 1993;11:245–67.

    PubMed  CAS  Google Scholar 

  150. Harding FA, McArthur SG, Gross JA et al. CD-28 mediated signalling co-stimulates murine T cells and prevents induction of anergy in T cell clones. Nature. 1992;356:607.

    PubMed  CAS  Google Scholar 

  151. Chong ASF, Gebel H, Finnegun A et al. Leflunomide, a novel immunomodulatory agent: in vitro analysis of mechanism of immunosuppression. Transplant Proc. 1993;25:747–9.

    PubMed  CAS  Google Scholar 

  152. Chong AS, Xiao F, Xu X et al. In vivo and in vitro immunosuppression with leflunomide. In: Przepiorka D, Sollinger HW, eds. Recent developments in transplantation medicine Vol 1: Newer Immunosupprcssivc drugs. Glenview, IL: Physicians and Scientists Publishing Co. 1994:163–77.

    Google Scholar 

  153. Bartlett RR, Dimitrijevic M, Mattar T et al. Leflunomide (HWA 486), a novel immuno-modulating compound for the treatment of autoimmune disorders and reactions leading to transplant rejection. Agents Actions. 1991;32:10–21.

    PubMed  CAS  Google Scholar 

  154. Chong ASF, Finnegan A, XingLi J et al. Leflunomide: a novel immmunosupprcssive agent. The mechanism of inhibition of T cell proliferation. Transplantation. 1993;55:1361–6.

    PubMed  CAS  Google Scholar 

  155. Kuchle CCA, Thoenes GH, Langer KH et al. Prevention of kidney and skin graft rejection in rats by leflunomide, a new immunomodulaling agent. Transplant Proc. 1991;23:1083–6.

    PubMed  CAS  Google Scholar 

  156. Williams JW, Xiao F, Foster PF et al. Immunosuppressive effects of leflunomide in a cardiac allograft model. Transplant Proc. 1993;25:745–6.

    PubMed  CAS  Google Scholar 

  157. Williams JW, Xiao F, Foster PF et al. Leflunomide in experimental transplantation. Control of rejection and alloantibody production, reversal of acute rejection and interaction with cyclosporin. Transplantation. 1994;57:1223–31.

    PubMed  CAS  Google Scholar 

  158. Morris RE, Huang X. Cao W et al. Leflunomide and its analog suppress T and B cell proliferation in vitro, acute rejection, ongoing rejection and anti-donor antibody synthesis in mouse, rat, and Cynomolgus monkey transplant recipients as well as arterial intimai thickening after balloon catheter injury. Transplant Proc. 1995;27:445–7.

    PubMed  CAS  Google Scholar 

  159. Xiao F, Chong A, Foster P et al. Effect of leflunomide in control of acute rejection in hamster to rat cardiac xenografts. Transplant Proc. 1994;26:1263–5.

    PubMed  CAS  Google Scholar 

  160. Gosio B. Ricerche bacteriologiche e chimiche sulle alterazioni del mais. Riv Igiene E Sanita Pubblica. 1896;7:825–68.

    Google Scholar 

  161. Birkinshaw JH, Raistrick H, Ross DJ. Studies in the biochemistry of microorganisms. Biochem J. 1952;50:630–4.

    PubMed  CAS  Google Scholar 

  162. Abraham EP. The effect of mycophenolic acid on the growth of Staphylococcus aureus in heart broth. Biochem J. 1945;39:398–408.

    PubMed  CAS  Google Scholar 

  163. Florey HW, Gilliver K, Jennings MA et al. Mycophenolic acid: an antibiotic from Penicillium brevicompactum Dierckx. Lancet. 1946;1:46–9.

    Google Scholar 

  164. Williams RH, Lively DH, De Long DC et al. Mycophenolic acid: antiviral and antilumor properties. J Antibiot. 1968;21:463–4.

    PubMed  CAS  Google Scholar 

  165. Carter SB, Franklin TJ, Jones DF et al. Mycophenolic acid an anti-cancer compound with unusual properties. Nature. 1969;223:848–50.

    PubMed  CAS  Google Scholar 

  166. Suzuki S, Kimura T, Ando K et al. Antitumor activity of mycophenolic acid. J Antibiot. 1969;22:297–302.

    PubMed  CAS  Google Scholar 

  167. Mitsui A, Suzuki S. Immunosuppressive effects of mycophenolic acid. J Antibiot. 1969;22:358–63.

    PubMed  CAS  Google Scholar 

  168. Jones JL, Epinette WW, Hackney VC et al. Treatment of psoriasis with oral mycophenolic acid. J Invest Dermatol. 1975;65:537–42.

    PubMed  CAS  Google Scholar 

  169. Marinari R, Fleischmajer R, Schragger AH et al. Mycophenolic acid in the treatment of psoriasis. Arch Dermatol. 1977;113:930–2.

    PubMed  CAS  Google Scholar 

  170. Allison AC, Hovi T, Watts RWE et al. The role of de nova purine synthesis in lymphocyte transformation. Ciba Found Symp. 1977;48:207–24.

    PubMed  CAS  Google Scholar 

  171. Franklin TJ, Cook JM. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem J. 1969;113:515–24.

    PubMed  CAS  Google Scholar 

  172. Natsumeda Y, Carr SF. Human type I and II IMPDH as drug targets. Ann NY Acad Sci. 1993;696:88–93.

    PubMed  CAS  Google Scholar 

  173. Lowe JK, Brox L, Henderson JF. Consequences of inhibition of guaninc nucleotide synthesis by mycophenolic acid and virazole. Cancer Res. 1977;37:736–43.

    PubMed  CAS  Google Scholar 

  174. Ohsugi Y, Suzuki S, Takagaki Y. Antitumor and immunosuppressive effects of mycophenolic acid derivatives. Cancer Res. 1976;36:2923–7.

    PubMed  CAS  Google Scholar 

  175. Nelson PH, Eugui E, Wang CC et al. Synthesis and immunosuppressive activity of some side chain variants of mycophenolic acid J Med Chcm. 1990; 33:833–8.

    CAS  Google Scholar 

  176. Lee WA, Gu L, Miksztal AR et al. Bioavailability improvement of mycophenolic acid through amino ester derivation. Pharm Res. 1990;7:161–6.

    PubMed  CAS  Google Scholar 

  177. Sweeney MJ, Hoffman DH, Esterman MA. Metabolism and biochemistry of mycophenolic acid. Cancer Res. 1972;32:1803–9.

    PubMed  CAS  Google Scholar 

  178. Sweeney MJ, Hoffman DH, Poore GA. Possible in situ activation of mycophenolic acid by B-glucuronidase. Cancer Res. 1971;31:477–8.

    PubMed  CAS  Google Scholar 

  179. Eugui EM, Almquist SJ, Muller CD et al. Lymphocyte selective cytoslalic and immunosuppressive effects of mycophenolic acid in vitro: the role of deoxyguanosine nucleotide depletion. Scand J Immunol. 1991;33:161–73.

    PubMed  CAS  Google Scholar 

  180. Lemster B, Woo J, Strednak J et al. Cytokine gene expression in murine lymphocytes activated in the presence of FK 506, Bredinin, mycophenolic acid or brequinar sodium. Transplant Proc. 1992;24:2845–46.

    PubMed  CAS  Google Scholar 

  181. Sollinger HW, Eugui EM, Allison AC. RS61443 — mechanism of action and early clinical results. Clin Transplant. 1991;8:523–6.

    Google Scholar 

  182. Allison AC, Almquist SJ, Muller CD et al. In vitro immunosuppressive effects of mycophenolic acid and an ester prodrug RS61443. Transplant Proc. 1991;23(Suppl. 2):10.

    PubMed  CAS  Google Scholar 

  183. Zeevi A, Yao GZ, Venkataramanan R et al. Comparative in vitro studies on the immunosuppressive effects of purine and pyrimidine synthesis inhibitors. Transplant Proc. 1993;25:781.

    PubMed  CAS  Google Scholar 

  184. Zeevi A, Woan M, Yao GZ et al. Comparative in vitro studies on the immunosuppressive activities of mycophenolic acid, Bredinin. FK 506, cyclosporin and rapamycin. Transplant Proc. 1991;23:2928–30.

    PubMed  CAS  Google Scholar 

  185. Burlingham WJ, Grailer AP, Hullett DA et al Inhibition of both MLC and in vitro IgG memory response to tetanus toxoid by RS61443. Transplantation. 1991;51:545–7.

    PubMed  CAS  Google Scholar 

  186. Grailer A, Nichols J, Hullett DA et al. Inhibition of human B Cell responses in vitro by RS61443, cyclosporin A, and DAB 486 IL2. Transplant Proc. 1991;23:314–15.

    PubMed  CAS  Google Scholar 

  187. Woo J, Zecvi A, Yao GZ et al. Effects of FK 506, mycophenolic acid and bredinin on OKT3, PMA and alloantigen induced activation molecule expression on cultured CD4 and CD8 human lymphocytes. Transplant Proc. 1991;23:2939–40.

    PubMed  CAS  Google Scholar 

  188. Lucas DL, Webster HK, Wright DG. Purine metabolism in mycloid precursor cells during maturation — studies with the HL-60 cell line. J Clin Invest. 1983;72:1889–900.

    PubMed  CAS  Google Scholar 

  189. Sokolwski JA, Blair OC, Sartorelh AC. Alterations in glycoprotein synthesis and guanosine triphosphate levels associated with the differentiation of HL 60 leukemia cells produced by inhibitors of inosine 5 phosphate dehydrogenase. Cancer Res. 1986;46:2314–19.

    Google Scholar 

  190. Allison AC, Eugui EM. Preferential suppression of lymphocyte proliferation by mycophenolic acid and predicted long term effects of mycophenolate mofetil in transplantation. Transplant Proc. 1994;26:3205–10.

    PubMed  CAS  Google Scholar 

  191. Sollinger HW. RS-61443: a new immunosuppressive agent. Transplant Proc. 1994;26:3144–6.

    PubMed  Google Scholar 

  192. Muller CD, Kowalski WJ, Eugui EM et al. Inhibition by mycophenolic acid of the transfer of mannose to lymphocyte cell membrane glycoproteins and cell adhesion. Eur J Cell Biol. (In press).

    Google Scholar 

  193. Alices M, Osborne L, Takada Y et al. VCAM I on activated endothelium interacts with leukocyte integrins VLA-4 at a site distinct from liber nectin binding site. Cell. 1990;60:577–84.

    Google Scholar 

  194. Morris RH, Wang J. Comparison of the immunosuppressive effects of mycophenolic acid and the morpholinoethylester of mycophenolic acid (RS-61443) in recipients of heart allografts. Transplant Proc. 1991;23:493–6.

    PubMed  CAS  Google Scholar 

  195. Morris RE, Hoyt EG, Murphy MP, Eugui EM, Allison AC. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T-and B-cell purine synthesis. Transplanl Proc. 1990;22:1659–62.

    CAS  Google Scholar 

  196. Morns RE, Hoyt EG, Eugui KM, Allison AC. Prolongation of rat heart allograft survival by RS 61443. Surg Forum 1989;40:337–8.

    Google Scholar 

  197. Morris RE, Wang J, Blum JR et al. Immunosuppressive effects of the morpholinoethyl ester of mycophenolic acid (RS-61443) in rat and nonhuman primate recipients of heart allografts. Transplant Proc. 1991;23:19–25.

    PubMed  Google Scholar 

  198. Kawamura T, Hullett DA, Suzuki Y et al. Enhancement of allograft survival by combination RS-61443 and DUP-785 therapy. Transplanlalion. 1993;55:641–5.

    Google Scholar 

  199. Bechstein WO, Schilling M, Slcele DM, Hullett DA, Snllinger HW. RS-61443/cyclosporin combination therapy prolongs canine liver allograft survival. Transplant Proc. 1993;25:702–3.

    PubMed  CAS  Google Scholar 

  200. Platx KP, Sollinger HW, Hullett DA et al. RS-61443: a new potent immunosuppressive agent. Transplantation. 1991;51:27–31.

    Google Scholar 

  201. Ha L. Lafferty KJ, Allison AC, Eugui EM. RS-61443 allows islet allografting and specific tolerance induction in adult mice. Transplant Proc. 1490;22:876–9.

    Google Scholar 

  202. Ha L, Calcinaro F, Gill RG, Eugui EM, Allison AC, Latterly KJ. Facilitation of specific tolerance inductin in adult mice by RS-61443. Transplantation. 1992;53:590–5.

    Google Scholar 

  203. Knechtle SJ, Wang J, Burlingham WJ, Beeskau M, Subramanian R, Sollinger HW. The influence of RS-61443 on antibody-mediated rejection. Transplantation. 1992;53:699–701.

    PubMed  CAS  Google Scholar 

  204. Ochiai T, Gunji Y, Nagata M, Asano T, Isono K. Effective and safe use of FK-506: a combination treatment with rapamycin or RS-61443 in experimental organ transplantation. Transplant Proc. 1991;23:2718–19.

    PubMed  CAS  Google Scholar 

  205. Murase N, Starzl TE, Dcmetris AJ et al. Hamster-to-rat heart and liver xenotransplantation with FK506 plus antiproliferative drugs. Transplantation. 1993;55:701–8.

    PubMed  CAS  Google Scholar 

  206. Wang J, Morris RE. Effect of splenectomy and mono-or combination therapy with rapamycin, the morpholinoethyl ester of mycophenolic acid and deoxyspergualin on cardiac xenograft survival. Transplant Proc. 1991;23:699–702.

    PubMed  Google Scholar 

  207. Hullett DA, Kawamura T, Fujino Y, Allison AM, Sollinger HW. Prolongation of allograft and xenograft survival with mycophenolate mofetil (RS-61443) and brequinar sodium (DUP-785). Transplant Proc. 1993;25:700–1.

    PubMed  CAS  Google Scholar 

  208. Steele DM, Hullett DA, Bechstein WO et al. Effects of immunosuppressive therapy on the rat aortic allograft model. Transplant Proc. 1993;25:754–5.

    PubMed  CAS  Google Scholar 

  209. Sokolowski AR, Myllarniemi M, Hayry P. Effect of mycophenolate mofetil on allograft arteriosclerosis. Transplant Proc. 1994;26:3225.

    Google Scholar 

  210. Gregory C. Morris RE, Pratt R, Billingham M, Shorthouse R. The use of new antiproliferative immunosuppressants is a novel and highly effective strategy for the prevention of vascular occlusive disease. J Heart Lung Transplant. 1992;11:197 (abstract).

    Google Scholar 

  211. Sollinger HW. Deierhoi MH, Beizer FO, Diethelm AG, Kauffman RS. RS-61443: a phase I clinical trial and pilot rescue study. Transplantation. 1992;53:428–32.

    PubMed  CAS  Google Scholar 

  212. Sollinger HW, Belzer FO, Deierhoi MH et al. RS-61443. A multicenter study for refractory kidney transplant rejection. Ann Surg. 1992;216:513–18.

    PubMed  CAS  Google Scholar 

  213. Laskow DA, Deierhoi MH, Hudson SL et al. The incidence of subsequent acute rejection following the treatment of refractory renal allograft rejection with mycophenolate mofetil. (RS 61443). Transplantation. 1994;57:640–3.

    PubMed  CAS  Google Scholar 

  214. Klintmalm GB, Ascher NL, Busuttil RW et al. RS-61443 for treatment-resistant human liver rejection. Transplant Proc. 1993;25:697.

    PubMed  CAS  Google Scholar 

  215. Freise CE, Herbert RW, Osorio B et al. Maintenance immunosuppression with prednisolone and RS 61443 alone following liver transplantation. Transplant Proc. 1993;25:1758–9.

    PubMed  CAS  Google Scholar 

  216. Ensley RD, Bristow MR, Olsen SL et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation. 1993; 56:75–82.

    PubMed  CAS  Google Scholar 

  217. Kobashigawa JA, Renlund DG, Olsen SL et al. Initial results of RS-61443 for refractory cardiac rejection. J Am Coll Cardiol. 1992;19:203A (abstract).

    Google Scholar 

  218. Kirklin JK, Deierhoi M, Naftel DC et al. Treatment of recurrent cardiac rejection with RS-61443: initial clinical experience. J Heart Lung Transplant. 1992;11:223 (abstract).

    Google Scholar 

  219. Taylor DO, Ensley RD, Olsen SL et al. Mycophenolale mofetil (RS62z1443): preclinical, clinical and three year experience in heart transplantation. J Heart Lung Transplant. 1994;13:571–82.

    PubMed  CAS  Google Scholar 

  220. Jones EL, Erost P, Epinette WW, Gomez E. Mycophenolic acid: an evaluation of long-term safety. In: Farber EM, Cox AJ, Jacobs PH, Nall ML, editors. Psoriasis: proceedings of the second international symposium. New York: Yorke: 1977:442–3.

    Google Scholar 

  221. Epinette WW, Parker CM, Jones EL et al. Mycophenolic acid for psoriasis: A review of pharmacology, long-term efficacy and safety. J Am Acad Dermatol. 1987; 17:962–71.

    PubMed  CAS  Google Scholar 

  222. Mizuno K, Tsujino M. Takada M et al. Studies of Bredinin. Isolation, characterization and biological properties. J Antibiotics. 1974;27:775–82.

    CAS  Google Scholar 

  223. Turka LA, Dayton J, Sinclair G et al. Guanitic ribonucleotide depletion inhibits T cell activation: mechanism of action of the immunosuppressive drug mizoribine. J Clin Invest. 1991;87:940–8.

    PubMed  CAS  Google Scholar 

  224. Kokado Y, Takahara S, Ishibashi M et al. Pharmacokinetics of mizorihine in renal transplant patients. Transplant Proc. 1994;26:2111–13.

    PubMed  CAS  Google Scholar 

  225. Ihara H, Shinkuma D, Nojima M et al. Clinical significance of blood level monitoring of mizoribine in kidney transplantation. Transplant Proc. 1994;26:2029–31.

    PubMed  CAS  Google Scholar 

  226. Kamata K, Okubu M, Ishigomori E et al. Immunosuppressive effect of bredinin on cell mediated and humoral immune reactions in experimental animals. Transplantation. 1983;35:144–9.

    PubMed  CAS  Google Scholar 

  227. Gregory CR, Gourley IM, Cain GR et al. Effects of combination of cyclosporin/mizoribine immunosuppression on canine renal allograft recipients. Transplantation. 1988;45:856–9.

    PubMed  CAS  Google Scholar 

  228. Hayashi R, Suzuki S, Shimatam K et al. Synergistic effect of cyclosporin and mizoribine on graft survival in canine organ transplantation. Transplant Proc. 1990;22:1676–8.

    PubMed  CAS  Google Scholar 

  229. Suzuki S, Hijioka T, Sakakibara I et al. The synergistic effect of cyclosporin and mizoribine on heterotopic heart and partial lung transplantation in rats. Transplantation. 1987;43:743–4.

    PubMed  CAS  Google Scholar 

  230. Mita K, Akiyama N, Nagao T et al. Advantages of mizoribinc over azathioprine in combination therapy with cyclosporin for renal transplantation. Transplant Proc. 1990;22:1679–81.

    PubMed  CAS  Google Scholar 

  231. Mammo F, Okubo M, Yokota K et al. A clinical study of renal transplant recipients receiving triple drug therapy — cyclosporin A, mizorihine and prednisolone. Transplant Proc. 1988;20:406–9.

    Google Scholar 

  232. Lee HA, Slapak M, Venkatraman G et al. Mizoribine as an alternative to azathioprine in triple therapy immunosuppressant regimens in cadaveric renal transplantation. Transplant Proc. 1993;25:2699–700.

    PubMed  CAS  Google Scholar 

  233. Nakajima A, Kanai A, Minami S et al. Application of mizoribine after keratoplasty and in treatment of uveitis. Am J Ophthalmol. 1985;100:161–3.

    PubMed  CAS  Google Scholar 

  234. Chen SF, Ruben R, Dexter D. Mechanism of action of novel anticancer agent 6-fluoro-2-(2’-fluoro-1, 1’-biphenyl-4-yl)-3-methyl-4-quinoline carboxylic acid sodium salt (NSC 368390); inhibition of de novo pyrimidine nucleotide biosynthesis. Cancer Res. 1986;46:5014–19.

    PubMed  CAS  Google Scholar 

  235. Chen SF, Papp LM, Ardecky RJ et al. Structure activity relationship of quinoline carboxylic acids: a new class of inhibitors of dihydroorotate dehydrogenase. Biochem Pharmacol. 1990;40:709–14.

    PubMed  CAS  Google Scholar 

  236. Simon P, Townsend RM, Harris RR et al. Brequinar sodium: inhibition of dihydroorotic acid dehydrogenase, depletion of pyrimidine pools and consequent inhibition of immune functions in vitro. Transplant Proc. 1993;25(Suppl. 2):77–80.

    PubMed  CAS  Google Scholar 

  237. Thomson AW, Starzl TE. New immunosuppressive drugs: mechanistic insights and potential therapeutic advances. Immunol Rev. 1993;136:71–98.

    PubMed  CAS  Google Scholar 

  238. Sher LS, Eiras-Hreha G, Kornhauser DM et al. Safety and pharmacokinetics of brequinar sodium (BQR) in liver allograft recipients on cyclosporin and steroids. Hepalology. 1993;18:746.

    Google Scholar 

  239. diForni M, Chabot GG, Armand JP et al. Phase I and pharmacokinetic study of brequinar (DUP785. NSC368390) in cancer patients. Eur J Cancer. 1993;29A:983–8.

    Google Scholar 

  240. Arteaga CL, Brown TD, Kuhn JG et al. Phase I clinical and pharmacokinetic trial of brequinar sodium (DUP785, NSC368390). Cancer Res. 1989;49:4648–53.

    PubMed  CAS  Google Scholar 

  241. Cramer DV, Chapman FA, Jaffee BD et al. The effect of new immunosuppressive drug, Brequinar sodium on heart, liver, and kidney allograft rejection in the rat. Transplantation. 1992;53:303.

    PubMed  CAS  Google Scholar 

  242. Cosenza CA, Cramer DV, Eiras-Hreha G et al. The synergism of brequinar sodium and cyclosporin when used in combination to prevent cardiac allograft rejection in the rat. Transplantation. 1993;56:667.

    PubMed  CAS  Google Scholar 

  243. Peters GJ, Laurensse E, Leyva A et al. A sensitive non radiometric assay for dihydroorotic acid dehydrogenase using anion exchange high performance liquid chromatography. Analyt Biochem. 1987;161:32.

    PubMed  CAS  Google Scholar 

  244. Jaffee BD, Jones EA, Loveless SE et al. The unique immunosuppressive activity of Brequinar sodium. Transplant Proc. 1993;25(Suppl. 2):19.

    PubMed  CAS  Google Scholar 

  245. Eiras-Hreha G, Cramer DV, Cajulis C et al. Correlation of the in vitro and in vivo immunosuppressive activity of Brequinar sodium. Transplant Proc. 1993;25:708–9.

    PubMed  CAS  Google Scholar 

  246. Makowka L, Sher LS, Cramer DV. The development of Brequinar as an immunosuppressive drug for transplantation. Immunol Rev. 1993;136:51–70.

    PubMed  CAS  Google Scholar 

  247. Cramer DV, Knoop M, Chapman FA et al. Prevention of liver allograft rejection in rats by a short course of therapy with brequinar sodium. Transplantation. 1992;54:752–3.

    PubMed  CAS  Google Scholar 

  248. Cramer DV, Makowka L. Brequinar sodium. In: Przepiorka D. Sollinger HW, eds. Recent developments in transplantation medicine Vol 1: Newer Immunosuppressive drugs. Glenview, IL: Physicians and Scientists Publishing Co. 1994:111–27.

    Google Scholar 

  249. Yasunaga C, Cramer DV, Chapman FA et al. The prevention of accelerated cardiac allograft rejection in sensitized recipients following treatment with Brequinar sodium. Transplantation. 1993;56(4):898–904.

    PubMed  CAS  Google Scholar 

  250. Cramer DV, Chapman FA, Jaffee BD et al. The prolongation of concordant hamster to rat cardiac xenografts by brequinar sodium. Transplantation. 1992;54:403.

    PubMed  CAS  Google Scholar 

  251. Cosenza CA, Tuso PJ, Chapman FA et al. Prolonged xenograft survival following combination therapy with brequinar sodium and cyclosporin. Transplant Proc. 1993;25(Suppl. 2):59.

    PubMed  CAS  Google Scholar 

  252. Stepkowski SM, Kahan BD. The synergistic activity of the triple combination: cyclosporin, rapamycin and brequinar. Transplant Proc. 1993;25(Suppl. 2):29–31.

    PubMed  CAS  Google Scholar 

  253. Schwartsmann G, Dodion P, Vermorken JB et al. Phase I study with brequinar sodium (NSC 368390) in patients with solid malignancies. Cancer Chemother Pharmacol. 1990;25:345.

    PubMed  CAS  Google Scholar 

  254. Maroun J, Ruckdeschel J, Natale R et al. Multicenter phase II study of brequinar sodium in patients with advanced lung cancer. Cancer Chemother Pharmacol. 1993;32:64.

    PubMed  CAS  Google Scholar 

  255. Urba S, Doroshow J, Cripps C et al. Multicenler phase II trial of brequinar sodium in patients with advanced squamous cell carcinoma of head and neck. Cancer Chemother Pharmacol. 1992;31:167.

    PubMed  CAS  Google Scholar 

  256. Schwartsmann G, Bork E, Vermorken JB et al. Mucoculancous side effects of brequinar sodium: a new inhibitor of pyrimidine de novo biosynthesis. Cancer. 1989;63:243–8.

    PubMed  CAS  Google Scholar 

  257. Loveless SE, Neubauer RH. Antimetastatic activity of DUP 785: a novel anticancer agent. Proc Am Assoc Cancer Res. 1986;27:276.

    Google Scholar 

  258. Takeuchi T, Iinuma H, Kunimoto S et al. A new antitumor antibiotic, spergualin: isolation and antitumor activity. J Antibiot. 1981;34:1619.

    PubMed  CAS  Google Scholar 

  259. Nadler SG, Tepper MA, Schacter B, Mazzucco CE. Interaction of the immunosuppressant deoxyspcrgualin with a member of the Hsp70 family of heat shock proteins. Science. 1992;258:484.

    PubMed  CAS  Google Scholar 

  260. VanBuskirk AM, DeNagel, Guagliardi LE et al. Cellular and subcellular distribution of PBP 72/74, a peptide binding protein that plays a role in antigen processing. J Immunol. 1991;146:500–6.

    PubMed  CAS  Google Scholar 

  261. VanBuskirk AM, Crump BL, Margoliah H et al. A peptide binding protein having a role in antigen presentation is a member of the Hsp70 heat shock family. J Exp Med. 1989;170:1799.

    PubMed  CAS  Google Scholar 

  262. Hightower LE. Heat shock, stress proteins, chaperones and proteotoxicity. Cell. 1991;66:191.

    PubMed  CAS  Google Scholar 

  263. Rippman F, Taylor WR, Rothbard JB et al. A hypothetical model for the peptide binding domain of Hsp70 based on the peptide domain of HLA. EMBO J. 1991;10:1053–9.

    Google Scholar 

  264. Tepper MA. Deoxyspergualin; mechanism of action studies of a novel immunosuppressive drug. Ann NY Acad Sci. 1993;696:123–32.

    PubMed  CAS  Google Scholar 

  265. Pratt WB, Hutchinson KA, Scherrer LC. Steroid receptor folding by heat shock proteins and composition of the receptor heterocomplex. Trends Endocrinol Metab. 1992;3:326–33.

    CAS  Google Scholar 

  266. Schreiber SL. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science. 1991;251:283–7.

    PubMed  CAS  Google Scholar 

  267. Aayogi T, Wada T, Iinuma H et al. Suppression of the activities of lymphocyte related enzymes in spleen, by administration of an immunosuppressant, 15-deoxyspergualin. Biochem Int. 1989;19:821–6.

    Google Scholar 

  268. Muindi J, Lee S, Baltzer L et al. Clinical pharmacology of deoxyspergualin in patients with advanced cancer. Cancer Res. 1991;51:3096–101.

    PubMed  CAS  Google Scholar 

  269. Sprancmanis LA, Riley CM, Stobaugh JF. Determination of the anti cancer drug, 15 deoxyspergualin, in plasma ultrafiltrate by liquid Chromatography and precolumn derivatization with naphthalene 2,3-dicarboxaldehyde/cyanide. J Pharmaceut Biomed Analysis. 1990;8:165.

    CAS  Google Scholar 

  270. Tepper MA, Nadler SG, Mazzucco C et al. Mechanism of action of 15-deoxyspergualin, a novel immunosuppressive drug. Ann NY Acad Sci. 1993;685:136–47.

    PubMed  CAS  Google Scholar 

  271. Nishimura K, Tokunga T. Mechanism of action of 15-deoxyspergualin. I. Suppressive effect on the induction of alloreactive secondary cytotoxic T lymphocytes in vitro and in vivo. Immunology. 1989;68:66.

    PubMed  CAS  Google Scholar 

  272. Makino M, Fujiwara M, Watanabe H et al. Immunosuppressive activities of deoxyspergualin. II. The effect on the antibody responses, Immunopharmacology. 1987;14:115–22.

    PubMed  CAS  Google Scholar 

  273. Dickneite G, Schorlemmer HU, Sedlacek HH. Decrease of mononuclear phagocyte cell functions and prolongation of graft survival in experimental transplantation by 15 deoxyspergualin. Int J Immunopharmacol. 1987;9:559–65.

    PubMed  CAS  Google Scholar 

  274. Waaga AM, Ulrichs K, Krzysmanski M et al. The immunosuppressive agent 15-deoxy-spergualin induces tolerance and modulates MHC antigen expression and interleukin I production in the early phase of rat allograft responses. Transplant Proc. 1990;22:1613–14.

    PubMed  CAS  Google Scholar 

  275. Hoeger P, Tepper MA, Faith A et al. The immunosuppressant deoxyspergualin inhibits antigen processing in monocytes. J Immunol. 1994;153:3908–16.

    PubMed  CAS  Google Scholar 

  276. Yuh DD, Morris RE. The immunopharmacology of immunosuppression by 15 deoxyspergualin. Transplantation. 1993;55:578–91.

    PubMed  CAS  Google Scholar 

  277. Nemoto K, Hayashi M, Ito J et al. Deoxyspergualin in lethal murine graft-versushost disease. Transplantation. 1991;51:712–15.

    PubMed  CAS  Google Scholar 

  278. Jiang H, Takahara S, Kyo M et al. In vivo and in vitro mechanisms of cardiac allograft acceptance in the rat after short treatment with 15 deoxyspergualin. Transplant Int. 1992;5:139–44.

    CAS  Google Scholar 

  279. Engemann R, Gasscll HJ, Lafrenz H et al. Transplantation tolerance after short term administration of 15-denxyspergualin in orthotopic rat liver transplantation. Transplant Proc. 1987;19:4241–3.

    PubMed  CAS  Google Scholar 

  280. Chikaraishi T, Seki T, Takeuchi I et al. Effect of short term administration of deoxyspergualin in rat allogenic renal transplantation. Transplant Proc. 1992;24:1631–2.

    PubMed  CAS  Google Scholar 

  281. Collier DSJ, Calne R, Thiru S et al. 15-Deoxyspcrgualin in experimental dog renal allografts. Transplant Proc. 1988;20:240–1.

    Google Scholar 

  282. Reiehenspurner H, Hildebrandt A, Human PA et al. 15-Deoxyspergualin for induction of graft nonreactivity after cardiac and renal allotransplantation in primates. Transplantation. 1990;50:181–5.

    Google Scholar 

  283. Gannedahl G, Karlsson PA, Totterman TH et al. 15-Deoxyspergualin inhibits antibody production in mouse to rat heart transplantation. Transplant Proc. 1993;25:778–80.

    PubMed  CAS  Google Scholar 

  284. Saumweber D, Singer T, Hammer C et al. 15-Deoxyspergualin — a new perspective on immunosuppressive therapy in experimental xenogeneic kidney transplantation (XKTP). Transplant Proc. 1989;21:542.

    PubMed  CAS  Google Scholar 

  285. Dickneite G, Schorlemmer H, Weinmann E et al. Skin transplantation in rats and monkeys. Evaluation of efficient treatment with 15-deoxyspergualin. Transplant Proc. 1987;19:4244–7.

    PubMed  CAS  Google Scholar 

  286. Henretta J, Pittman K, McFadden T et al. Deoxyspergualin and rabbit antithymocyte globulin markedly prolong discordant pig pancreatic islet xenografts. Transplant Proc. 1993;25:412–13.

    PubMed  CAS  Google Scholar 

  287. Amemiya H. Deoxyspergualin: clinical trials in renal graft rejection. Ann NY Acad Sci. 1993;685:196–201.

    PubMed  CAS  Google Scholar 

  288. Tepper MA. Deoxyspergualin: Preclinical Update and Clinical Pharmacology. In: Przepiorka D, Sollinger HW, eds. Recent developments in transplantation medicine Vol I: Newer Immunosuppressive drugs. Glenview, IL: Physicians and Scientists Publishing Co. 1994:139–61.

    Google Scholar 

  289. Suzuki S. Deoxyspergualin. Mode of action and clinical trials. Ann NY Acad Sci. 1993;685:263.

    Google Scholar 

  290. Koyama I, Amcmiya H, Taguchi Y et al. Prophylactic use of deoxyspergualin in a quadruple immunosuppressive protocol in renal transplantation. Transplant Proc. 1991;23:1096.

    PubMed  CAS  Google Scholar 

  291. Groth CG, Ohlman S, Ericzon BG et al. Deoxyspergualin for liver graft rejection. (Letter) Lancet. 1990;336:626.

    PubMed  CAS  Google Scholar 

  292. Gores PF, Najarian JS, Stephanian E et al. Insulin independence in type I diabetes after transplantation of unpurified islets from single donor with 15-deoxyspergualin. Lancet. 1993;341:19–21.

    PubMed  CAS  Google Scholar 

  293. Takahashi K, Yagisawa T, Sonda K et al. ABO-incompatible kidney transplantation in a single center trial. Transplant Proc. 1993;25:271.

    PubMed  CAS  Google Scholar 

  294. Norman DJ, Bennett WM, Cobanoglu A et al. Use of OKT4A (a murine monoclonal anti-CD4 antibody) in human organ transplantation: initial clinical experience. Transplant Proc. 1993;25:802–3.

    PubMed  CAS  Google Scholar 

  295. Henell KR, Cheever JM, and Kimball JA et al. OKT4A (a munne IgG2a anti-CD4 monoclonal antibody) in human organ transplantation: pharmacokinetics and peripheral pharmacodynamics. Transplant Proc. 1993;25:800–1.

    PubMed  CAS  Google Scholar 

  296. Delmonico FL, Knowles RW, Colvin RB et al. Immunosuppression of Cynomolgus renal allograft recipients with humanized OKT4A monoclonal antihodies. Transplant Proc. 1993;25:784–5.

    PubMed  CAS  Google Scholar 

  297. Cosimi AB, Dclmonico FL, Wright JK et al. OKT4A monoclonal antibody immunosuppression of Cynomolgus renal allograft recipients. Transplant Proc. 1991: 23:501–3.

    PubMed  CAS  Google Scholar 

  298. Cooperative Clinical Trials in Transplantation (CCTT) Research Group. Murine OKT4A immunosuppression in cadaver donor renal allograft recipients: a cooperative pilot study (report I). Transplant Proc. 1995;27:863.

    Google Scholar 

  299. Tinubu SA, Hakimi J, Kondas JA et al. Humanized antibody directed to the IL-2 receptor beta-chain prolongs primate cardiac allograft survival. J Immunol. 1994;153:4330–8.

    PubMed  CAS  Google Scholar 

  300. Anasetti C, Hansen JA, Waldmann TA et al. Treatment of acute graft-versus-host disease with humanized anti-Tac: an antibody that binds to the interleukin-2 receptor. Blood. 1994;84:1320–7.

    PubMed  CAS  Google Scholar 

  301. Parentcau GL, Dirbas FM, Garmestani K et al. Prolongation of graft survival in primate allogralt transplantation by yttrium-90-labeled anti-Tac in conjunction with granulocyte colony-stimulating factor. Transplantation. 1992;54:963–8.

    Google Scholar 

  302. Kirkman RL, Shapiro ME, Carpenter et al. A randomized prospective trial of anti-Tac monoclonal antibody in human renal transplantation. Transplantation. 1991;51:107–13.

    PubMed  CAS  Google Scholar 

  303. Chovnick A, Schneider WP, Tso-JY et al. A recombinant, membrane-acting immunotoxin. Cancer Res. 1991;51:465–7.

    PubMed  CAS  Google Scholar 

  304. Brown PS Jr, Parenteau GL, Dirbas EM et al. Anti-Tae-H, a humanized antibody to the interleukin 2 receptor, prolongs primate cardiac allograft survival. Proc Natl Acad Sci USA. 1991;88:2663–7.

    PubMed  CAS  Google Scholar 

  305. Kirkman RL, Shapiro MH, Carpenter CB et al. A randomized prospective trial of anti-Tac monoclonal antibody in human renal transplantation. Transplant Proc. 1991;23:1066–7.

    PubMed  CAS  Google Scholar 

  306. Cooper MM, Robbins RC, Goldman CK et al. Use of yttrium-90-labeled anti-Tac antibody in primate xenograft transplantation. Transplantation. 1990;50:760–5.

    PubMed  CAS  Google Scholar 

  307. Blazar BR, Carroll SF, Vallera DA. Prevention of munne graft-versus host disease and bone marrow allocngraftment across the major histocompatibility barrier after donor graft preincubation with anti-LE AI immunotoxin. Blood. 1991;78:3093–102.

    PubMed  CAS  Google Scholar 

  308. LeMauff B, Hourmant M, Rougier JP et al. Effect of anti-LFAI (CDI 1a) monoclonal antibodies in acute rejection in human kidney transplantation. Transplantation. 1991;52:291–6.

    CAS  Google Scholar 

  309. Stoppa AM, Maraninchi D, and Blaise D et al. Anti-LFA1 monoclonal antibody (25.3)for treatment of steroid-resistant grade III–IV acute graft-versus-host disease. Transplant Int. 1991;4:3–7.

    CAS  Google Scholar 

  310. Haug CE, Colvin RB, Delmonico FL et al. Phase I trial of immunosuppression with anti ICAM-1 (CD54) Mab in renal allograft recipients. Transplantation. 1993:55:766–73.

    PubMed  CAS  Google Scholar 

  311. Isobe M, Yagita H, Okumura K et al. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-I and LFA-I. Science. 1992;255:1125–7.

    PubMed  CAS  Google Scholar 

  312. Kupiec-Weglinski JW, Diamantstein T, Tilnev NL. Interleukin 2 receptor targeted therapy — rationale and applications in organ transplantation. Transplantation. 1988;46:785–92.

    PubMed  CAS  Google Scholar 

  313. Manetti R, Barak V, Piccinni MF et al. Interleukin I favors the in vitrto development of type 2 T helper (Th2) human T cell clones. Res Immunol. 1994; 145:93–100.

    PubMed  CAS  Google Scholar 

  314. Piazza A, Torlone N, Valeri M et al. Antidonor-HLA antibodies and soluble HLA antigens after kidney transplant. Transplant Proc. 1993;25:3279–80.

    PubMed  CAS  Google Scholar 

  315. Suciu Foca N, Ho E, King DW et al. Soluble HLA and anti-idiotypic antibodies in transplantation: modulation of anti-HLA antibodies by soluble HLA antigens from the graft and anti-idiotypic antibodies in renal and cardiac allograft recipients. Transplant Proc. 1991;23:295–6.

    Google Scholar 

  316. Claus R, Werner H, Schulze HA et al. Are soluble monocyte-derived HLA class II molecules candidates for immunosuppressive activity? Immunol Lett. 1990;26:203–10.

    PubMed  CAS  Google Scholar 

  317. Buelow R, Burlingham WJ, Clayberger C. Immunomodulation by soluble HLA class I. Transplantation. 1995;59:649–54.

    PubMed  CAS  Google Scholar 

  318. Baliga P, Chavin KD, Qin L et al. CTLA4 Ig prolongs allograft survival while suppressing cell mediated immunity. Transplantation. 1994;58:1082–90.

    PubMed  CAS  Google Scholar 

  319. Koehler M, Hurwitz CA, Krance RA et al. XomaZyme-CD5 immunotoxin in conjunction with partial T cell depletion for prevention of graft rejection and graftversus-host disease after bone marrow transplantation from matched unrelated donors. Bone Marrow Transplant. 1994;13:571–5.

    PubMed  CAS  Google Scholar 

  320. Woodworth TG, Nichols JC. Recombinant fusion toxins — a new class of targeted biologic therapeutics. Cancer Treat Res. 1993;68:145–60.

    PubMed  CAS  Google Scholar 

  321. Hullett DA, Landry AS, Eckhoff DE et al. DAB486-IL-2 (IL-2-toxin) in combination with low-dose RS-61443 (mycophenolatc mofetil) prolongs murine thyroid allograft survival. Transplant Proc. 1993;25:756–7.

    PubMed  CAS  Google Scholar 

  322. Meneghetti CM, LeMaistre CF. Initial clinical experiences with an interleukin-2 fusion toxin (DAB486-IL-2). Targeted Diagn Ther. 1992;7:395–401.

    PubMed  CAS  Google Scholar 

  323. Bastos MG, Pankewycz O, Rubin-Kelley VE et al. Concomitant administration of hapten and IL-2-toxin (DAB486-IL-2) results in specific deletion of antigenactivated T cell clones. J Immunol 1990;145:3535–9.

    PubMed  CAS  Google Scholar 

  324. Bacha P, Horte S, Kassam N et al. Pharmacokinetics of the recombinant fusion protein DAB486IL-2 in animal models. Cancer Chemother Pharmacol. 1990;26:409–14.

    PubMed  CAS  Google Scholar 

  325. Lin H, Chensue SW, Strieter RM et al. Antibodies against tumor necrosis factor prolong cardiac allograft survival in the rat. J Heart Lung Transplant. 1992;11:330–5.

    PubMed  CAS  Google Scholar 

  326. Boiling SF, Kunkel SL, Lin H. Prolongation of cardiac allograft survival in rats by anti-TNF and cyclosporin combination therapy. Transplantation. 1992;53:283–6.

    Google Scholar 

  327. Seu P, Imagawa DK, Wasef F, et al. Monoclonal anti-tumor necrosis factor-alpha antibody treatment of rut cardiac allografts: synergism with low-dose cyclosporin and immunohistological studies. J Surg Res. 1991;50:520–8.

    PubMed  CAS  Google Scholar 

  328. Imagawa DK, Millis JM, Seu P et a. The role of tumor necrosis factor in allograft rejection. III. Evidence that anti-TNF antibody therapy prolongs allograft survival in rats with acute rejection. Transplantation. 1991;51:57–62.

    PubMed  CAS  Google Scholar 

  329. Coito AJ, Binder J, Brown LF. et al. Anti-TNF-alpha treatment down-regulates the expression of fibronectin and decreases cellular infiltration of cardiac ailografts in rats. J Immunol. 1995;154:2949–58.

    PubMed  CAS  Google Scholar 

  330. Imagawa DK, Millis JM, Olthoff KM et al. The role of tumor necrosis factor in allograft rejection. II. Evidence that antibody therapy against tumor necrosis factoralpha and lymphotoxin enhances cardiac allograft survival in rats. Transplantation. 1990;50:189–93.

    PubMed  CAS  Google Scholar 

  331. Eason JD, Wee S, Kawai T et al. Inhibition of the effects of TNF in renal allograft recipients using recombinant human dimeric tumor necrosis factor receptors. Transplantation. 1995;59:300–5.

    PubMed  CAS  Google Scholar 

  332. Cosimi AB. Future of monoclonal antibodies in solid organ transplantation. Dig Dis Sci. 1995;40:65–72.

    PubMed  CAS  Google Scholar 

  333. Badger AM, DiMartino MJ, Talmadge JE et al. Inhibition of animal models of autoimmune disease and the induction of nonspecific suppressor cells by SK&F 105685 and related azaspiranes. Int J Immunopharmacol. 1989;11:839–46.

    PubMed  CAS  Google Scholar 

  334. Schmidbauer G, Hancock WW, Badger AM et al. Induction of nonspecific X-irradiation-resistant suppressor cell activity in vivo and prolongation of vascularized allograft survival by SK&F 105685, a novel immunomodulatory azaspirane. Transplantation. 1993;55:1236–43.

    PubMed  CAS  Google Scholar 

  335. Strober S. Natural suppressor cells, neonatal tolerance, and total lymphoid irradiation. Annu Rev Immunol. 1984;2:219–37.

    PubMed  CAS  Google Scholar 

  336. Badger AM, Albrightson-Winslow CR, Kupiec-Weglinski JW. SK&F 105685: a novel immunosuppressive compound with efficacy in animal models of autoimmunity and transplantation. Transplant Proc. 1991;23:194–5.

    PubMed  CAS  Google Scholar 

  337. Hancock WW, Schmidbauer G, Badger AM et al. SK&F 105685 suppresses allogeneically induced mononuclear and endothelial cell activation and cytokine production and prolongs rat cardiac allograft survival. Transplant Proc. 1992;24:231–2.

    PubMed  CAS  Google Scholar 

  338. Fan PY, Best C, Coffman TM et al. The azaspirane SK&F 105685 ameliorates renal allograft rejection in rats. J Am Soc Nephrol. 1993;3:1680–5.

    PubMed  CAS  Google Scholar 

  339. Badger AM, Swift BA, Bugelski PJ et al. The effect of SK&F 105685, a novel suppressor cell inducing compound, in the adjuvant arthritic rat. Br J Rheumatel. 1991:30(Suppl.2):66–9.

    Google Scholar 

  340. Albrightson-Winslow CR, Brickson B, King A et al. Beneficial effects of long term treatment with SK&F 105685 in murine lupus nephritis. J Pharmacol Exp Ther. 1990;255:382–7.

    PubMed  CAS  Google Scholar 

  341. Wolfe JT, Lessin SR, Singh AH et al. Review of immunomodulation by photopheresis: treatment of cutaneous T cell lymphoma, autoimmune disease, and allograft rejection. Artif Organs. 1994;18:888–97.

    PubMed  CAS  Google Scholar 

  342. Vowels BR, Cassin M, Boulai MH et al. Extracorporeal photochemotherapy induces the production of tumor necrosis factor-alpha by monocytes: Implications for the treatment of cutaneous T cell lymphoma, and systemic sclerosis. J Invest Dermatol. 1992;98:686–92.

    PubMed  CAS  Google Scholar 

  343. Perez M, Edelson R, La Roche L et al. Specific suppression of antiallograft immunity by immunization with syngeneic photoinactivated effector lymphocytes. J Invest Dermatol. 1989;92:669–76.

    PubMed  CAS  Google Scholar 

  344. Granstein RD, Smith L, Parrish JA. Prolongation of murine skin allograft survival by the systemic effects of 8-methoxypsoralen and long wave ultraviolet radiation (PUVA). J Invest Dermatol. 1987;88:424.

    PubMed  CAS  Google Scholar 

  345. Oluwole SF, Chabot J, Pepino P. In-vitro mechanisms responsible for prolonged rat cardiac allograft survival induced by ultraviolet irradiated donor specilic blood and cyclosporin. Transplant Proc. 1987;19:4331.

    PubMed  CAS  Google Scholar 

  346. Pepino P, Berger CL, Fuzesi L et al. Primate cardiac alloand xeno-transplantation: modulation of the immune response with photochemotherapy. Eur Surg Res. 1989;21:105.

    PubMed  CAS  Google Scholar 

  347. Costanzo-Nordin MR, Hubbell EA, O’Sullivan EJ et al. Successful treatment of heart transplant rejection with photopheresis. Transplantation. 1992;53:808–15.

    PubMed  CAS  Google Scholar 

  348. Costanzo-Nordin MR, Hubbell EA, O’Sullivan EJ et al. Photopheresis versus corticostcroids in therapy of heart transplant rejection. Preliminary clinical report. Circulation. 1992;86(Suppl. 5):11242–50

    Google Scholar 

  349. Winters GL, Costanzo-Nordin MR, Hubbell FA et al. Endomyocardial biopsy findings after photopheresis treatment of cardiac transplant rejection. J Heart Lung Transplant. 1992;11:200.

    Google Scholar 

  350. Barr ML, Berger CL, Wiedermann JG et al. Photochemotherapy for the prevention of graft atherosclerosis in cardiac transplantation. J Heart Lung Transplant. 1993;12:S85.

    Google Scholar 

  351. Saul R, Ghidoni JJ, Molyneux RJ et al. Castanospermine inhibits α-glucosidase activities and alters glycogen distribution in animals. Proc Natl Acad Sci USA. 1985;82:93–7.

    PubMed  CAS  Google Scholar 

  352. Grochowicz PM, Bowen KM, Hibberd AD et al. Castanospermine modifies expression of adhesion molecules in allograft recipients. Transplant Proc. 1993;25:2900–1.

    PubMed  CAS  Google Scholar 

  353. More SE, Spiro RG. Inhibition of glucose trimming by castanospermine results in rapid degradation of unassembled major histocompatibility complex class I molecules. J Biol Chcm. 1993;268:3809–12.

    Google Scholar 

  354. Colson TL, Marcus BH, Zeevi A et al. Increased lymphocyte adherence to human arterial endothelial cell monolayers in the context of allorecognition. J Immunol. 1990;144:2975–84.

    PubMed  CAS  Google Scholar 

  355. Hibberd AD, Grochowicz, PM, Smart YC et al. Castanospermine downregulates membrane expression of adhesion molecules in heart allograft recipients. Transplant Proc. 1995;27:448–9.

    PubMed  CAS  Google Scholar 

  356. Karasuno T, Nishiura T, Nakao H et al. Glycosidase inhibitors (castanospermine and swainsonine) and neuraminidase inhibit pokeweed mitogen induced B cell maturation. Eur J Immunol. 1992;22:2003–8.

    PubMed  CAS  Google Scholar 

  357. Grochowicz PM, Bowen KM, Hibberd AD et al. Castanospermine, an inhibitor of glycoprotein processing, prolongs pancreaticoduodenal allograft survival. Transplant Proc. 1992;24:2295–6.

    PubMed  CAS  Google Scholar 

  358. Grochowicz PM, Bowen KM, Hibberd AD et al. Interference with intracellular carbohydrate processing by castanospermine prolongs heart allograft survival. Transplant Proc. 1993;25:743–4.

    PubMed  CAS  Google Scholar 

  359. Grochowicz PM, Hibberd AD, Bowen KM et al. Castanospermine, an alpha glucosidase inhibitor, prolongs renal allograft survival in the rat. Transplant Proc. 1990;22:2117–18.

    PubMed  CAS  Google Scholar 

  360. Barlett MR, Warren HS, Cowden WB et al. Effects of the anti-inflammatory compound castanospermine, mannose-6-phosphate and fucoidan on allograft rejection and elicited peritoneal exudatcs. Immunol Cell Biol. 1994;72:367–74.

    Google Scholar 

  361. Grochowicz PM, Hibberd AD, Bowen KM et al. Synergism of Castanospermine and FK-506. Transplant Proc. 1995;27:355–6.

    PubMed  CAS  Google Scholar 

  362. Gunasekara SP, Gunasekara M, Longley RE et al. Discodennolide, a new bioactive polyhydroxylated lactone from a marine sponge, Discodermia dissoluta. J Org Chem. 1990;55:4912–15.

    Google Scholar 

  363. Longley RE, Caddigan D, Hurmodv D et al. Discodermolide: a new marine derived immunosuppressive compound. I. In vitro studies. Transplantation. 1991;52:650–6.

    PubMed  CAS  Google Scholar 

  364. Longley RE, Gunasekura SP, Faherty D et al. Immunosuppression by Discodermolide. Ann NY Acad Sci. 1993;696:94–107.

    PubMed  CAS  Google Scholar 

  365. Lock RB, Ross WE. DNA topoisomerases in cancer therapy. Anti-Cancer Drug Design. 1987;2:151–64.

    PubMed  CAS  Google Scholar 

  366. Longley RE, Caddigan D, Harmody D et al. Discodermolide: a new marine derived immunosuppressive compound. II. In vivo studies. Transplantation. 1991;52:656–61.

    PubMed  CAS  Google Scholar 

  367. Dutarte P, Annat J, Derrapas P. LF 08-0299 induces tolerance after short term treatment in a fully major histocompatibility mismatched rat cardiac allograft model. Transplant Proc. 1995;27:440–2.

    Google Scholar 

  368. Weir MR, Li XW, Gomolka D et al. Immunosuppressive properties of Enisoprost and a 5-lipooxygenase inhibitor (SC 45662). Transplantation Proc. 1991;23:1074–7.

    CAS  Google Scholar 

  369. Thobum CJ, Hess AD. Bryostatin can induce antigen specilic nonresponsiveness in human peripheral blood T cells. Transplantation Proc. 1995;27:443–5.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Trehan, S., Taylor, D.O., Renlund, D.G. (1996). New Pharmacologic Immunosuppressive Agents. In: Cooper, D.K.C., Miller, L.W., Patterson, G.A. (eds) The Transplantation and Replacement of Thoracic Organs. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-34287-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34287-0_70

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-8898-2

  • Online ISBN: 978-0-585-34287-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics