Skip to main content

Ca2+ Ion Shifts in Vivo in Reversible and Irreversible Ischemic Injury

  • Chapter
The Ischemic Heart

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 1))

Abstract

The changes in ion content and H2O detectable in vivo in the intact canine heart in reversible and irreversible ischemic injury are described, with emphasis on the role Ca2+ movements may play in causing ischemic injury. Changes in extracellular ion concentrations and pH revealed by ion-specific electrodes in ischemia are reviewed, as are the contributions of nuclear magnetic resonance measurements of ionized Ca2+ to our understanding of Ca2+ ion homeostasis in ischemia.

During the reversible phase of ischemic injury in vivo, there is little evidence of significant failure of ion pumps. Nevertheless, substantial shifts in ions and water occur while the myocardium is ischemic. Moreover, after reperfusion with arterial blood, living reversibly injured myocytes exhibit altered volume regulation that persists for minutes to hours. Increases in intracellular Ca2+ ion are small (i.e., μM) during the reversible phase and are much larger (i.e., mM) during the irreversible phase of ischemic injury, at which time the so-called calcium overload is clearly present. It is not known whether the overload is an epiphenomenon or a primary cause of lethal injury in Ischemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry WH, Hasin Y, Smith TW. 1985. Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res 56:231–241.

    PubMed  CAS  Google Scholar 

  2. Barry WH, Smith TW. 1984. Movement of Ca2+ across the sarcolemma: effects of abrupt exposure to zero external Na concentration. J Mol Cell Cardiol 16:155–164.

    Article  PubMed  CAS  Google Scholar 

  3. Murphy E, Aiton JF, Horres R, Lieberman M. 1983. Calcium elevation in cultured heart cells: its role in cell injury. Am Physiol Soc 245:C316–C321.

    CAS  Google Scholar 

  4. Cala PM. 1980. Volume reation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol 76:683–708.

    Article  PubMed  CAS  Google Scholar 

  5. Jennings RB, Steenbergen C Jr, Kinney RB, Hill ML, Reimer KA. 1983. Comparison of the effect of ischaemia and anoxia on the sarcolemma of the dog heart. Eur Heart J 4(Suppl):123–127.

    PubMed  CAS  Google Scholar 

  6. Steenbergen C Jr, Murphy E, Levy L, London RE. 1987. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707.

    PubMed  CAS  Google Scholar 

  7. Steenbergen C Jr, Perlman ME, London RE, Murphy E. 1993. Mechanism of preconditioning. Ionic alterations. Circ Res 72:112–115.

    PubMed  CAS  Google Scholar 

  8. Jennings RB, Reimer KA. 1979. Biology of experimental, acute myocardial ischaemia and infarction. In Hearse DJ, de Leiris J (eds), Enzymes in Cardiology: Diagnosis and Research. Great Britain/New York John Wiley & Sons, pp. 21–57.

    Google Scholar 

  9. Menick FJ, White FC, Bloor CM. 1971. Coronary collateral circulation: determination of an anatomical anastomotic index of functional collateral flow capacity. Am Heart J 82:503–510.

    Article  PubMed  CAS  Google Scholar 

  10. Schaper W, Wusten B. 1979. Collateral circulation. In Schaper W (ed), Pathophysiology of Myocardial Perfusion. Amsterdam: Elsevier/North Holland Biomedical Press, pp. 415–470.

    Google Scholar 

  11. Jennings RB, Murry CE, Steenbergen C Jr, Reimer KA. 1990. Development of cell injury in sustained acute ischemia. Circulation 82(Suppl):II-2–II-12.

    CAS  Google Scholar 

  12. Jennings RB, Reimer KA, Steenbergen C Jr. 1986. Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion (editorial). J Mol Cell Cardiol 18:769–780.

    Article  PubMed  CAS  Google Scholar 

  13. Jennings RB, Steenbergen C Jr. 1985. Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol 47:727–749.

    Article  PubMed  CAS  Google Scholar 

  14. Jennings RB, Kaltenbach JP, Smetters GW. 1957. Enzymatic changes in acute myocardial ischemic injury. Arch Pathol Lab Med 64:10–16.

    CAS  Google Scholar 

  15. Hill JL, Genes LS. 1980. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 61:768–778.

    PubMed  CAS  Google Scholar 

  16. Jennings RB, Reimer KA. 1973. The fate of the ischemic myocardial cell. In Corday E, Swan HJC (eds), Myocardial Infarction. New Perspectives in Diagnosis and Management. Baltimore: Williams and Wikins, pp. 13–24.

    Google Scholar 

  17. Jennings RB, Schaper J, Hill ML, Steenbergen C Jr, Reimer KA. 1985. Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56:262–278.

    PubMed  CAS  Google Scholar 

  18. Jennings RB, Reimer KA. 1992. Lethal reperfusion injury: fact or fancy? In Parratt JR (ed), Myocardial Response to Acute Injury. London: Macmillan Press, pp. 17–34.

    Google Scholar 

  19. Reimer KA, Jennings RB. 1982. Ion and water shifts, cellular. In Cowley RA, Trump BF (eds), Cellular Injury in Shock, Anoxia and Ishemia. Pathophysiology. Prevention and Treatment. Baltimore: Williams and Wilkins, pp. 132–147.

    Google Scholar 

  20. Jennings RB, Crout JR, Smetters GW. 1957. Studies on distribution and localization of potassium in early myocardial ischemic injury. Arch Pathol 63:586–592.

    CAS  Google Scholar 

  21. Jennings RB, Sommers HM, Kaltenbach JR, West JJ. 1964. Electrolyte alterations in acute myocardial ischemic injury. Circ Res 14:260–269.

    PubMed  CAS  Google Scholar 

  22. Basuk WL, Reimer KA, Jennings RB. 1986. Effect of repetitive brief episodes of ischemia on cell volume, electrolytes and ultrastructure. J Am Coll Cardiol (Suppl):33A–41A.

    Google Scholar 

  23. Jennings RB, Ganote CE, Kloner RA, Whalen DA Jr, Hamilton DG. 1975. Explosive swelling of myocardial cells irreversibly injured by transient ischemia. In Fleckenstein F, Rona G (eds), Pathophysiology and Morphology of Myocardial Cell Alteration. Baltimore: University Park Press, pp. 405–413.

    Google Scholar 

  24. Jennings RB, Hawkins HK, Hill ML. 1977. Myocardial cell volume control in ischemic injury. In Lefer A, Kelliher G, Rovetto M (eds), Pathophysiology: Therapeutics of Myocardial Injury. New York: Spectrum Publications pp. 351–365.

    Google Scholar 

  25. Jennings RB, Shen AC. 1972. Calcium in experimental myocardial ischemia. In Bajusz E, Rona G (eds), Recent Advances in Studies on Cardiac Structure and Metabolism. Myocardiology. Baltimore: University Park Press, pp. 639–655.

    Google Scholar 

  26. Shen AC, Jennings RB. 1972. Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol 67:417–440.

    PubMed  CAS  Google Scholar 

  27. Shen AC, Jennings RB. 1972. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol 67:441–452.

    PubMed  CAS  Google Scholar 

  28. Weiss J, Shine KI. 1982. Extracellular K+ accumulation during myocardial ischemia in isolated rabbit heart. Am J Physiol 242:H619–H628.

    PubMed  CAS  Google Scholar 

  29. Fleet WF, Johnson TA, Graebner CA, Gettes LS. 1985. Effect of serial brief ischemic episodes on extracellular K+, pH, and activation in the pig. Circulation 72:922–932.

    PubMed  CAS  Google Scholar 

  30. Pike MM, Luo CS, Clark MD, Kirk KA, Kitakaze M, Madden MC, Cragoe EJ, Pohost GM. 1993. NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na+-H+ exchange. Am J Physiol 265:H2017–H2026.

    PubMed  CAS  Google Scholar 

  31. Whalen DA Jr, Hdton DG, Ganote CE, Jennings RB. 1974. Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol 74:381–398.

    PubMed  CAS  Google Scholar 

  32. Kloner RA, Ganote CE, Whalen D, Jennings RB. 1974. Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol 74:399–422.

    PubMed  CAS  Google Scholar 

  33. Herdson PB, Sommers HM, Jennings RB. 1965. A comparative study of the fine structure of normal and ischemic dog myocardium with special reference to early changes following temporary occlusion of a coronary artery. Am J Pathol 46:367–386.

    PubMed  CAS  Google Scholar 

  34. Lehninger AL. 1970. Mitochondria and calcium ion transport. Biochem J 119:129–138.

    PubMed  CAS  Google Scholar 

  35. Kloner RA, Ganote CE, Jennings RB. 1974. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 543:1496–1508.

    Google Scholar 

  36. Yellon DM, Jennings RB. 1991. Myocardial Protection: The Pathophysiology of Reperfusion and Reperfusion Injury. New York: Raven Press, pp. 1–214.

    Google Scholar 

  37. Fleckenstein A. 1971. Specific inhibitors and promotors of calcium action in the excitation contraction coupling of heart muscle and their role in the prevention or production of rnyocardial lesions. In Harris P, Opie L (eds), Calcium and the Heart. New York: Academic Press, pp. 135–189.

    Google Scholar 

  38. Fleckenstein A, Fleckenstein-Grun G. 1980. Cardiovascular protection by Ca antagonists. Eur Heart J 1(Suppl B):15–21.

    PubMed  CAS  Google Scholar 

  39. Fleckenstein A, Janke J, Doring HJ, Leder O. 1975. Key role of Ca in the production of noncoronarogenic myocardial necroses. In Fleckenstein A, Rona G (eds), Recent Advances in Studies on Cardiac Structure and Metabolism. Baltimore: University Press, pp. 21–32.

    Google Scholar 

  40. Ganote CE, Nayler WG. 1985. Contracture and the Calcium Paradox (editorial review). J Mol Cell Cardiol 17:733–745.

    Article  PubMed  CAS  Google Scholar 

  41. Bolli R. 1990. Mechanism of myocardial “stunning.” Circulation 82:723–738.

    PubMed  CAS  Google Scholar 

  42. Murry CE, Richard VJ, Jennings RB, Reimer U. 1991. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol (Heart Circ Physiol) 260(29):H796–H804.

    CAS  Google Scholar 

  43. Murry CE, Richard VJ, Reimer KA, Jennings RB. 1990. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during sustained ischemia. Circ Res 66:913–931.

    PubMed  CAS  Google Scholar 

  44. Swain JL, Sabina RL, Hines JJ, Greenfield JC Jr, Holmes EW. 1984. Repetitive episodes of brief ischemia (12 min) do not produce a cumulative depletion of high energy phosphate compounds. Cardiovasc Res 18:264–269.

    Article  PubMed  CAS  Google Scholar 

  45. Metcalfe JC, Hesketh TR, Smith GA. 1985. Free cytosolic Ca+ measurements with fluorine labelled indicators using 19F NMR. Cell Calcium 6:183–195.

    Article  PubMed  CAS  Google Scholar 

  46. Pike MM, Frazer JC, Dedrick DF, Ingwall JS, Allen PD, Springer CS, Smith TW. 1985. 23Na and 39K nuclear magnetic resonance studies of perfused rat hearts. Biophys J 48:159–173.

    PubMed  CAS  Google Scholar 

  47. Malloy CR, Buster DC, Margarida M, Castro CA, Geraldes CFGC, Jeffrey FMH, Sherry AD. 1990. Influence of global ischemia on intracellular sodium in the perfused rat heart. Magn Reson Med 15:33–44.

    Article  PubMed  CAS  Google Scholar 

  48. Steenbergen C, Murphy E, Levy L, London RE. 1987. Elevation in cytosolic free calcium concentration early in myocardial ischemia in pefused rat heart. Circ Res 60:700–707.

    PubMed  CAS  Google Scholar 

  49. Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP. 1987. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 84:6005–6009.

    Article  PubMed  CAS  Google Scholar 

  50. London RE, Rhee CK, Murphy E, Gabel S, Levy LA. 1994. NMR-sensitive fluorinated and fluorescent intracellular calcium ion indicators with high dissociation constants. Am J Physiol 266:C1313–C1322.

    PubMed  CAS  Google Scholar 

  51. Murphy E, Steenbergen C, Levy LA, Gabel S, London RE. 1994. Measurement of cytosolic free calcium in perfused rat heart using TF-BAPTA. Am J Physiol 266:C1323–C1329.

    PubMed  CAS  Google Scholar 

  52. Chen W, Steenbergen C, Levy LA, Vance J, London RE, Murphy E. 1996. Measurement of free Ca2+ in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2-bis(2-amino-5,6-difluorophenoxy)ethane-N,N,N′,N′-tetraacetic acid by 19F NMR. J Biol Chem 271:7398–7403.

    Article  PubMed  CAS  Google Scholar 

  53. Murphy E, Perlman M, London RE, Steenbergen C. 1991. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68:1250–1258.

    PubMed  CAS  Google Scholar 

  54. Murphy E, Steenbergen C, Levy LA, Raju B, London RE. 1989. Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem 264:5622–5627.

    PubMed  CAS  Google Scholar 

  55. Westfall MV, Solaro RJ. 1992. Alterations in myofibrillar function and protein profiles after complete global ischemia in rat hearts. Circ Res 70:302–313.

    PubMed  CAS  Google Scholar 

  56. Matsumura Y, Saeki E, Inoue M, Hori M, Kamada T, Kusuoka H. 1996. Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res 79:447–454.

    PubMed  CAS  Google Scholar 

  57. Reimer KA, Jennings RB. 1992. Myocardial ischemia, hypoxia, and infarction. In Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan HE (eds), The Heart and Cardiovascular System. New York: Raven Press, pp. 1875–1973.

    Google Scholar 

  58. Reimer KA, Hill ML, Jennings RB. 1981. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13:229–239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jennings, R.B., Steenbergen, C. (1998). Ca2+ Ion Shifts in Vivo in Reversible and Irreversible Ischemic Injury. In: Mochizuki, S., Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Ischemic Heart. Progress in Experimental Cardiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-39844-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-39844-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8105-1

  • Online ISBN: 978-0-585-39844-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics