Skip to main content

Mathematical Modelling of Vascular Tumour Growth and Implications for Therapy

  • Chapter
Mathematical Modeling of Biological Systems, Volume I

Summary

In this chapter we briefly discuss the results of a mathematical model formulated in [22] that incorporates many processes associated with tumour growth. The deterministic model, a system of coupled non-linear partial differential equations, is a combination of two previous models that describe the tumour-host interactions in the initial stages of growth [11] and the tumour angiogenic process [6]. Combining these models enables us to investigate combination therapies that target different aspects of tumour growth. Numerical simulations show that the model captures both the avascular and vascular growth phases. Furthermore, we recover a number of characteristic features of vascular tumour growth such as the rate of growth of the tumour and invasion speed. We also show how our model can be used to investigate the effect of different anti-cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol., 60, 857–900 (1998).

    Article  MATH  Google Scholar 

  2. Arakelyn, L., Merbi, Y., Agur, Z.: Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids. Eur. J. Cancer, 41, 159–167 (2004).

    Article  Google Scholar 

  3. Baxter, L.T., Yuan, F., Jain, R.K.: Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: comparison with experimental data. Cancer Res., 52, 5838 (1992).

    Google Scholar 

  4. Breward, C.J.W., Byrne, H.M., Lewis, C.E.: A multiphase model describing vascular tumour growth. J. Math. Biol., 65, 609–640 (2003).

    Article  Google Scholar 

  5. Breward, C.J.W., Byrne, H.M., Lewis, C.E.: Modelling the interaction between tumour cells and a blood vessel in micro-environment within a vascular tumour. Eur. J. Appl. Math., 12, 529–556 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  6. Byrne, H.M., Chaplain, M.A.J.: Mathematical models for tumour angiogenesis-numerical simulations and non-linear wave solutions. Bull. Math. Biol., 57, 461–486 (1995).

    MATH  Google Scholar 

  7. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Variations in tumour growth rates and metabolism with oxygen concentration, glucose concentration and extracellular pH. J. Cell. Physiol., 151, 386–394 (1992).

    Article  Google Scholar 

  8. De Angelis, E., Preziosi, L.: Advection-diffusion models for solid tumour evolution in vivo and related free boundary problems. Math. Models Methods Appl. Sci., 10, 379–407 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. Edelstein, L.: The propagation of fungal colonies: a model for tissue growth. J. Theor. Biol., 98, 679–701 (1982).

    Article  MathSciNet  Google Scholar 

  10. Folkman, J.: The vascularization of tumours In: Friedberg, E.C. (ed.) Cancer Biology: Readings from Scientific American. 115–124 (1986).

    Google Scholar 

  11. Gatenby, R.A., Gawlinski, E.T.: A reaction-diffusion model of cancer invasion. Cancer Res., 56, 5745–5753 (1996).

    Google Scholar 

  12. Gimbrone, M.A., Cotran, R.S., Leapman, S.B., Folkman, J.: Tumour growth and neovascularisation: an experimental model using rabbit cornea. J. Natl. Cancer Inst., 52, 413–427 (1974).

    Google Scholar 

  13. Griffiths, L., Daches, G.U.: The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor thymidine phosphorylase in human breast tumour cells in vitroand in vivo. Cancer Res., 57, 570–572 (1997).

    Google Scholar 

  14. Hahnfield, P., Panigraphy, D., Folkman, J., Hlatky, L.: Tumour development under angiogenic signalling: a dynamic theory of tumour growth, treatment response and post-vascular dormancy. Cancer Res., 59, 4770–4775 (1999).

    Google Scholar 

  15. Jackson, T.L., Byrne, H.M.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumours to chemotherapy. Math. Biosci., 164, 17–38 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. Moreira, J., Deutsch, A.: Cellular automaton models of tumour development: a critical review. Adv. Comp. Sys., 5, 247–267 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  17. Muthukkaruppan, V.R.M., Kubai. L., Auerbach, R.: Tumour-induced neovascularisation in the mouse eye. J.Natl.Cancer Inst., 69, 699–705 (1982).

    Google Scholar 

  18. d’Onfrio, A., Gandolfi, A.: Tumour eradication by anti-angiogenic therapy: analysis and extension of the model by Hahnfeldt et al. (1999). Math. Biosc., 191, 154–184 (2004).

    Google Scholar 

  19. O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., Folkman, J.: Endostatin: an endogenous inhibitor of angiogenesis and tumour growth. Cell, 88, 277–285, (1997).

    Article  Google Scholar 

  20. O’Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., Folkman, J.: Angiostatin. A novel angiogenic inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell, 79, 315–328, (1994).

    Article  Google Scholar 

  21. Orme, M.E., Chaplain, M.A.J.: Two-dimensional models of tumour angiogenesis and anti-angiogenic strategies. IMA. J. Math. Appl. Med. Biol., 14, 189–205 (1997).

    Article  MATH  Google Scholar 

  22. Panovska, J.: Mathematical modelling of tumour growth and applications for therapy, D.Phil. Thesis, Oxford University, UK (2005).

    Google Scholar 

  23. Panovska, J., Byrne, H., Maini, P.: A mathematical model of vascular tumour growth, (in preparation).

    Google Scholar 

  24. Panovska, J., Byrne, H., Maini, P.: A theoretical study of the response of vascular tumours to different types of chemotherapy, (in preparation).

    Google Scholar 

  25. Pettet, G.J., Please, C.P., Tindall, M.J., McElwain, D.L.S.: The migration of cells in multicell tumor spheroids. Bull. Math. Biol., 63, 231–257 (2001).

    Article  Google Scholar 

  26. 26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran: the art of scientific computing, 2nd edition. Cambridge University Press (1994).

    Google Scholar 

  27. Sherratt, J.A., Chaplain, M.A.J.: A new mathematical model for avascular tumour growth.

    Google Scholar 

  28. Sherratt, J.A., Nowak, M.A.: Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model. Proc. R. Soc. Lond., 248, 261–271 (1992).

    Article  Google Scholar 

  29. Sholley, M.M., Ferguson, G.P.: Mechanism of neovascularisation.Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest., 51, 624–634 (1984).

    Google Scholar 

  30. Smallbone, K., Gavaghan, D.J., Gatenby, R.A., Maini, P.K.: The role of acidity in solid tumour growth and invasion. J. Theor. Biol., 235, 476–484 (2005).

    Article  MathSciNet  Google Scholar 

  31. Sutherland, R.M.: Cell and environment interactions in tumour microregions: the multicell spheroid model. Science, 240, 177–184 (1988).

    Article  Google Scholar 

  32. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol., 16, 171–211 (1999).

    Article  MATH  Google Scholar 

  33. West, C.M., Price, P.: Combretastatin A4 phosphate. Anticancer Drugs, 15, 179–187 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Panovska, J., Byrne, H.M., Maini, P.K. (2007). Mathematical Modelling of Vascular Tumour Growth and Implications for Therapy. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_18

Download citation

Publish with us

Policies and ethics