Skip to main content

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 1729 Accesses

Abstract

Inverse problems play an important role in science and engineering. Estimation of boundary conditions on the temperature distribution inside a metallurgical furnace and reconstruction of tissue density inside a body on plane projections obtained with x-rays are some examples. Different problems in epidemiology, demography, and biodemography can be considered as solutions of inverse problems as well: when using observed data one estimates the process that generated the data. Examples are estimation of infection rate on dynamics of the disease, estimation of mortality rate on the sample of survival times, and estimation of survival in the wild on survival in the laboratory. A specific property of the inverse problem—the instability of a solution—is discussed and a procedure for the solution stabilization is presented. Examples of morbidity estimation on incomplete data, HIV infection rate estimation on dynamics of AIDS cases, and estimation of the survival function in a wild population on survival of captured animals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalen, O. O., Farewell, V. T., de Angelis, D., Day, N. E., and Gill, O. N. (1997). A Markov model for HIV disease progression including the effect of HIV diagnosis and treatment: Application to AIDS prediction in England and Wales, Statistics in Medicine, 16, 2191–2210.

    Article  Google Scholar 

  2. Bacchetti, P., Segal, M. R., and Jewell, N. P. (1993). Backcalculation of HIV infection rates, Stat. Sci., 8, 82–101.

    Article  Google Scholar 

  3. Becker, N. G., Watson, L. F., and Carlin, J. B. (1991). A method of non-parametric back-projection and its application to AIDS data, Statistics in Medicine, 10, 1527–1542.

    Article  Google Scholar 

  4. Bellocco, R. and Pagano, M. (2001). Multinomial analysis of smoothed HIV back-calculation models incorporating uncertainty in the AIDS incidence, Statistics in Medicine, 20, 2017–2033.

    Article  Google Scholar 

  5. Brookmeyer, R. and Gail, M. H. (1988). A method for obtaining short-term projections and lower bounds on the size of the AIDS epidemic, Journal of the American Statistical Society, 83, 301–308.

    MATH  Google Scholar 

  6. Carey, J. R. and Vaupel, J. W. (2005). Biodemography, In Handbook of Population (Eds., D. L. Poston, and M. Mickin), pp. 625–658, Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  7. Chapelle, O., Vapnik, V., and Bengio, Y. (2002). Model selection for small sample regression, Machine Learning, 48, 9–23.

    Article  MATH  Google Scholar 

  8. Deuffic, S. and Costagliola, D. (1999). Is the AIDS incubation time changing? A back-calculation approach, Statistics in Medicine, 18, 1031–1047.

    Article  Google Scholar 

  9. Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regularization of Inverse Problems, Kluwer, Dordrecht.

    MATH  Google Scholar 

  10. Engl, H. W., Hofinger, A., and Kinderann, S. (2005). Convergence rates in the Prokhorov metric for assessing uncertainty in ill-posed problems, Inverse Problems, 21, 399–412.

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans, S. N. and Stark, P. N. (2002). Inverse problems as statistics, Inverse Problems, 18, R55-R97.

    Article  MATH  MathSciNet  Google Scholar 

  12. Finch, C. E. and Austad, S. N. (2001). History and prospects: Symposium on organisms with slow aging, Exp. Gerontol. 36, 593–597.

    Article  Google Scholar 

  13. Geman, S. and Hwang, C-R. (1982). Nonparametric maximum likelihood estimation by the method of sieves, Annals of Statistics, 10, 401–414.

    Article  MATH  MathSciNet  Google Scholar 

  14. Joly, P. and Commenges, D. (1999). A penalized likelihood approach for a progressive three-state model with censored and truncated data: application to AIDS, Biometrics, 55, 887–890.

    Article  MATH  Google Scholar 

  15. Liao, J. and Brookmeyer, R. (1995). An empirical Bayes approach to smoothing in backcalculation of HIV infection rates, Biometrics, 51, 579–588.

    Article  MATH  Google Scholar 

  16. Lukas, M. A. (1998). Comparison of parameter choice methods for regularization with discrete noisy data, Inverse Problems, 14, 161–184.

    Article  MATH  MathSciNet  Google Scholar 

  17. Michalski, A. I. (2005). Estimation of HIV infected number in population on the dynamics of observed AIDS cases, In Demography of HIV, Population and Crisises, 11 (Ed., B. P. Denisov), pp. 75–99, MSU, Moscow (in Russian).

    Google Scholar 

  18. Michalski, A. I., Morgenstern, W., Ivanov, V. K., and Maksyitov, M.A. (1996). Estimation of morbidity dynamics from incomplete follow-up studies, Journal Epidemiology and Biostatistics, 1, 151–157.

    Google Scholar 

  19. Mikhal’skii, A. I. (1987). Choosing an algorithm of estimation based on samples of limited size, Automatization and Remote Control, 48, 909–918.

    Google Scholar 

  20. Morgenstern, W., Ivanov, V. K., Michalski, A. I., Tsyb, A. F., and Schettler, G. (1995). Mathematical Modelling with Chernobyl registry data, Springer-Verlag, Berlin.

    Google Scholar 

  21. Morozov, V. A. (1993). Regularization Methods for Ill-Posed Problems, CRC Press, Boca Raton, FL.

    MATH  Google Scholar 

  22. Muller, H.-G., Wang, J.-L., Carey, J. R., Caswell-Chen, E. P., Chen, C., Papadopoulos, N., and Yao, F. (2004). Demographic window to aging in the wild: Constructing life tables and estimating survival functions from marked individuals of unknown age, Aging Cell, 3, 125–131.

    Article  Google Scholar 

  23. Nair, M. T., Pereverzev, S. V., and Tautenhahn, U. (2005). Regularization in Hilbert scales under general smoothing conditions, Inverse Problems, 21, 1851–1869.

    Article  MATH  MathSciNet  Google Scholar 

  24. Nair, M. T., Schock, E., and Tautenhahn, U. (2003). Morozov’s discrepancy principle under general source conditions, Journal for Analysis and its Applications, 22, 199–214.

    MATH  MathSciNet  Google Scholar 

  25. Natterer, F. (1984). Error bounds for Tikhonov regularization in Hilbert scales, Applied Analysis, 18, 9–37.

    MathSciNet  Google Scholar 

  26. O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems, Statistical Science, 1, 502–518.

    Article  MATH  MathSciNet  Google Scholar 

  27. Shen, X. (1997). On methods of sieves and penalization, Annals of Statistics, 25, 2555–2591.

    Article  MATH  MathSciNet  Google Scholar 

  28. Stone, M. (1974). Cross-validation choice and assessment of statistical prediction, Journal of the Royal Statistical Society, Series B, 36, 111–133.

    MATH  Google Scholar 

  29. Sweeting, M. J., de Angelis, D., and Aalen O. O. (2006). Bayesian back-calculation using a multi-state model with application to HIV, Statistics in Medicine, 24, 3991–4007.

    Article  Google Scholar 

  30. Tan, W.-Y., and Ye, Z. (2000). Estimation of HIV infection and incubation via state space models, Mathematical Biosciences, 167, 31–50.

    Article  MATH  Google Scholar 

  31. Tikhonov, A. N., and Arsenin, V. Y. (1977). Solutions of Ill-Posed Problems, John Wiley & Sons, New York.

    MATH  Google Scholar 

  32. United Nations (2003). The impact of HIV/AIDS on mortality, In Workshop on HIV/AIDS and Adult Mortality in Developing Countries, New York.

    Google Scholar 

  33. Vapnik, V. (1982). Estimation of Dependencies Based on Empirical Data, Springer-Verlag, Berlin.

    Google Scholar 

  34. Vapnik, V. (1998). Statistical Learning Theory, John Wiley & Sons, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Michalski, A. (2008). Application of Inverse Problems in Epidemiology and Biodemography. In: Vonta, F., Nikulin, M., Limnios, N., Huber-Carol, C. (eds) Statistical Models and Methods for Biomedical and Technical Systems. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4619-6_20

Download citation

Publish with us

Policies and ethics