Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 288))

Summary

Compact Lie groups do not only carry the structure of a Riemannian manifold, but also canonical families of bundle gerbes. We discuss the construction of these bundle gerbes and their relation to loop groups. We present several algebraic structures for bundle gerbes with connection, such as Jandl structures, gerbe modules and gerbe bimodules, and indicate their applications to Wess–Zumino terms in two-dimensional field theories.

2000 Mathematics Subject Classifications: 22E67, 55R65, 81T40.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray and D. Stevenson, Twisted K-Theory and K-Theory of Bundle Gerbes, Commun. Math. Phys. 228(1), 17–49 (2002), hep-th/0106194.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Bachas, M. Douglas and C. Schweigert, Flux Stabilization of D-Branes, JHEP 0005(048) (2000), hep-th/0003037v2.

    Google Scholar 

  3. N. Bourbaki, ´El´ements de Math´ematique. Fasc. XXXIV. Groupes et alg`ebres de Lie. Chapitre IV–VI, Hermann, Paris, 1968.

    Google Scholar 

  4. P. Bordalo, S. Ribault and C. Schweigert, Flux Stabilization in Compact Groups, JHEP 0110(036) (2001).

    Google Scholar 

  5. J.-L. Brylinski, Gerbes on Complex Reductive Lie Groups, math/0002158.

    Google Scholar 

  6. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, volume 107 of Progress in Mathematics, Birkh¨auser, 1993.

    Google Scholar 

  7. D. S. Chatterjee, On the Construction of Abelian Gerbes, Ph.D. thesis, Cambridge Univ., Cambridge, UK, 1998.

    Google Scholar 

  8. A. L. Carey, S. Johnson and M. K. Murray, Holonomy on D-Branes, J. Geom. Phys. 52(2), 186–216 (2002), hep-th/0204199.

    MathSciNet  Google Scholar 

  9. J. Fuchs, I. Runkel and C. Schweigert, TFT Construction of RCFT Correlators III: Simple Currents, Nucl. Phys. B 694, 277–353 (2004), hep-th/0403157.

    MathSciNet  Google Scholar 

  10. J. Fuchs, C. Schweigert and K. Waldorf, Bi-Branes: Target Space Geometry for World Sheet Topological Defects, hep-th/0703145, J. Geom. Phys. 58, 576–598 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Gawedzki, Topological Actions in Two-Dimensional Quantum Field Theories, in Non-perturbative Quantum Field Theory, edited by G. Hooft, A. Jaffe, G. Mack, K. Mitter and R. Stora, pages 101–142, Plenum Press, New York, 1988.

    Google Scholar 

  12. K. Gawedzki, Abelian and Non-Abelian Branes in WZW Models and Gerbes, Commun. Math. Phys. 258, 23–73 (2005), hep-th/0406072.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Gawedzki and N. Reis, WZW Branes and Gerbes, Rev. Math. Phys. 14(12), 1281–1334 (2002), hep-th/0205233.

    Article  MathSciNet  Google Scholar 

  14. K. Gawedzki and N. Reis, Basic Gerbe over Non Simply Connected Compact Groups, J. Geom. Phys. 50(1–4), 28–55 (2003), math.dg/0307010.

    MathSciNet  Google Scholar 

  15. K. Gawedzki, R. R. Suszek and K. Waldorf, WZW Orientifolds and Finite Group Cohomology, hep-th/0701071, Commun. Math. Phys. 284 1–49 (2008).

    Article  MathSciNet  Google Scholar 

  16. K. Gomi and Y. Terashima, Higher-Dimensional Parallel Transports, Math. Research Letters 8, 25–33 (2001).

    MATH  MathSciNet  Google Scholar 

  17. E. Meinrenken, The Basic Gerbe over a Compact Simple Lie Group, Enseign. Math., II. Sr. 49(3–4), 307–333 (2002), math/0209194.

    MathSciNet  Google Scholar 

  18. J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Mathematical Studies, Princeton University Press, Princeton, NJ, 1976.

    Google Scholar 

  19. M. K. Murray and D. Stevenson, Bundle Gerbes: Stable Isomorphism and Local Theory, J. Lond. Math. Soc. 62, 925–937 (2000), math/9908135.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. K. Murray, Bundle Gerbes, J. Lond. Math. Soc. 54, 403–416 (1996), dg-ga/9407015.

    MATH  Google Scholar 

  21. A. Pressley and G. Segal, Loop Groups, Oxford Univ. Press, Oxford, 1986.

    MATH  Google Scholar 

  22. U. Schreiber, C. Schweigert and K. Waldorf, Unoriented WZW Models and Holonomy of Bundle Gerbes, Commun. Math. Phys. 274(1), 31–64 (2007), hep-th/0512283.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Stevenson, The Geometry of Bundle Gerbes, Ph.D. thesis, University of Adelaide, Australia, 2000, math.DG/0004117.

    Google Scholar 

  24. K. Waldorf, More Morphisms Between Bundle Gerbes, Theory Appl. Categories 18(9), 240–273 (2007), math.CT/0702652.

    MATH  MathSciNet  Google Scholar 

  25. E. Witten, Nonabelian Bosonization in Two Dimensions, Commun. Math. Phys. 92, 455–472 (1984).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schweigert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schweigert, C., Waldorf, K. (2011). Gerbes and Lie Groups. In: Neeb, KH., Pianzola, A. (eds) Developments and Trends in Infinite-Dimensional Lie Theory. Progress in Mathematics, vol 288. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4741-4_10

Download citation

Publish with us

Policies and ethics