Skip to main content

Abstract

The first part of this chapter is mainly concerned with the construction of Clifford algebras for real and complex nondegenerate quadratic spaces of arbitrary rank and signature, these being presented as matrix algebras over ℝ, ℂ, ℍ, 2ℝ, 2ℂ or 2ℍ. In each case the algebra has an anti-involution known as conjugation, and the second part is concerned with determining products, or equivalently correlations, on the spinor space for which the induced adjoint anti-involution on the matrix algebra is conjugation. Applications of the classification are to the description of the Spin groups and conformal groups for quadratic spaces of low dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, L. (1985), Möbius transformations and Clifford numbers, in I. Chavel, H.M. Parkas (eds) Differential Geometry and Complex Analysis. Dedicated to H.E. Rauch, Springer-Verlag, Berlin, pp. 65–73.

    Chapter  Google Scholar 

  2. Ahlfors, L. (1986), Möbius transformations in ℝn expressed through 2 × 2 matrices of Clifford numbers, Complex Variables 5, 215–224.

    Article  MathSciNet  MATH  Google Scholar 

  3. Clifford, W.K. (1876), Preliminary sketch of Biquaternions, Proc. London Math. Soc. 4, 381–395.

    Google Scholar 

  4. Cnops, J. (1994), Hurwitz Pairs and Applications of Möbius Transformations, Thesis, Universiteit Gent.

    Google Scholar 

  5. Elstrodt, J., Grunewald, F. and Mennicke, J. (1987), Vahlen’s group of Clifford matrices and spin groups, Math Z. 196, 369–390.

    Article  MathSciNet  MATH  Google Scholar 

  6. Fillmore, J. and Springer, A. (1990), Möbius groups over general fields using Clifford algebras associated with spheres, Int. J. Theo. Phys. 29, 225–246.

    Article  MathSciNet  MATH  Google Scholar 

  7. Grassmann, H. (1844), Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre, eine neue mathematishcen Disclipin, Leipzig.

    Google Scholar 

  8. Haantjes, J. (1937), Conformal representations of an n-dimensional euclidean space with a nondefinite fundamental form on itself, Proc. Ned. Akad. Wet. (Math) 40, 700–705.

    Google Scholar 

  9. Hamilton, W.R. (1844), On quaternions, or on a new system of imaginaries in algebra, Phil. Mag. 25, 489–495, reprinted in The Mathematical papers of Sir William Rowan Hamilton, Vol. III, Algebra, Cambridge University Press, London (1967), pp. 106-110.

    Google Scholar 

  10. Hampson, A. (1969), Clifford Algebras, MSc. Thesis, University of Liverpool.

    Google Scholar 

  11. Hurwitz, A. (1923), Über die Komposition der quadratischen Formen, Math. Ann. 88, 294–298.

    Google Scholar 

  12. Liouville, J. (1850), Appendix to Monge, G. Application de l’analyse à la geométrie, 5 éd. par Liouville.

    Google Scholar 

  13. Lipschitz, R. (1884), Üntersuchungen über die Summen von Quadraten, Bonn.

    Google Scholar 

  14. Maks, J. (1989), Modulo (1, 1) periodicity of Clifford algebras and the generalized (anti-)Möbius transformations, Thesis, Technische Universiteit Delft.

    Google Scholar 

  15. Maks, J. (1992), Clifford algebras and Möbius transformations, in A. Micali et al. (eds) Clifford Algebras and their Applications in Mathematical Physics, Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  16. Porteous, I.R. (1969), Topological Geometry, 1st Edition, Van Nostrand Reinhold.

    Google Scholar 

  17. Porteous, I.R. (1995), Clifford Algebras and the Classical Groups, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  18. Pozo, J.M. and Sobczyk, G. (2002), Geometric algebra in linear algebra and geometry, Acta Applicandae Mathematicae 71, 207–244.

    Article  MathSciNet  MATH  Google Scholar 

  19. Radon, J. (1923), Lineare Scharen orthogonaler Matrizen, Abh. math. Semin. Univ. Hamburg 1, 1–14.

    Article  Google Scholar 

  20. Vahlen, K. Th. (1902), Über Bewegungen und complexe Zahlen, Math. Ann. 55, 585–593.

    Article  MathSciNet  MATH  Google Scholar 

  21. Wall, C.T.C. (1968), Graded algebras, antiinvolutions, simple groups and symmetric spaces, Bull. Am. Math. Soc. 74, 198–202.

    Article  MATH  Google Scholar 

  22. Waterman, P.L. (1993), Möbius transformations in several dimensions, Adv. in Math. 101, 87–113.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porteous, I.R. (2004). Mathematical Structure of Clifford Algebras. In: Abłamowicz, R., Sobczyk, G. (eds) Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8190-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8190-6_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3257-1

  • Online ISBN: 978-0-8176-8190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics