Skip to main content

Propagation of Wigner Functions for the Schrödinger Equation with a Perturbed Periodic Potential

  • Conference paper
Multiscale Methods in Quantum Mechanics

Part of the book series: Trends in Mathematics ((TM))

Summary

Let V Γ be a lattice periodic potential and A and Φ external electromagnetic potentials which vary slowly on the scale set by the lattice spacing. It is shown that the Wigner function of a solution of the Schrödinger equation with Hamiltonian operator \(H = \tfrac{1}{2}{{( - i{{\nabla }_{x}} - A(\varepsilon x))}^{2}} + {{V}_{\Gamma }}(x) + \phi (\varepsilon x)\) propagates along the flow of the semiclassical model of solid states physics up to an error of order ε. If ε-dependent corrections to the flow are taken into account, the error is improved to order ε 2. We also discuss the propagation of the Wigner measure. The results are obtained as corollaries of an Egorov type theorem proved in [PST3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders, New York, 1976.

    Google Scholar 

  2. G. Bal, A. Fannjiang, G. Papanicolaou and L. Ryzhik, Radiative transport in a periodic structure, J. Stat. Phys. 95 (1999), 479–494.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bechouche, N.J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal, Comm. Pure Appl. Math. 54 (2001), 851–890.

    MathSciNet  MATH  Google Scholar 

  4. V. Buslaev, Semiclassical approximation for equations with periodic co-efficients, Russ. Math. Surveys 42 (1987), 97–125.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Dimassi, J.-C. Guillot and J. Ralston, Semiclassical asymptotics in magnetic Bloch bands, J. Phys. A 35 (2002), 7597–7605.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series 268, Cambridge University Press, 1999.

    Book  MATH  Google Scholar 

  7. O. Gat and J.E. Avron, Magnetic fingerprints of fractal spectra and the duality of Hofstadter models, New J. Phys. 5 (2003), 44.1–44.8.

    Article  Google Scholar 

  8. P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Commun. Pure Appl. Math. 50 (1997), 323–380.

    MATH  Google Scholar 

  9. J.C. Guillot, J. Ralston and E. Trubowitz, Semi-classical asymptotics in solid state physics, Commun. Math. Phys. 116 (1988), 401–415.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Hövermann, H. Spohn and S. Teufel. Semiclassical limit for the Schrödinger equation with a short scale periodic potential, Commun. Math. Phys. 215 (2001), 609–629.

    Article  MATH  Google Scholar 

  11. T. Jungwirth, Q. Niu and A.H. MacDonald, Anomalous Hall effect in ferromagnetic semiconductors, Phys. Rev. Lett. 88 (2002), 207–208.

    Article  Google Scholar 

  12. W. Kohn, Theory of Bloch electrons in a magnetic field: The effective Hamiltonian, Phys. Rev. 115 (1959), 1460–1478.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.L. Lions and T. Paul, Sur les mesures de Wigner, Revista Mathematica Iberoamericana 9 (1993), 553–618.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.M. Luttinger, The effect of a magnetic field on electrons in a periodic potential, Phys. Rev. 84 (1951), 814–817.

    Article  MathSciNet  MATH  Google Scholar 

  15. A.Ya. Maltsev and S.P. Novikov, Topological phenomena in normal metals, Physics - Uspekhi 41 (1998), 231–239.

    Article  Google Scholar 

  16. P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner-function theoretic approach to (semi)-classical limits• electrons in a periodic potential, J. Math. Phys. 35 (1994), 1066–1094.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry, Texts in Applied Mathematics Vol. 17, Springer Verlag, 1999.

    Book  Google Scholar 

  18. G. Nenciu and V. Sordoni, Semiclassical limit for multistate Klein-Gordon systems: Almost invariant subspaces and scattering theory, Math. Phys. Preprint, Archive mp_arc 01–36 (2001).

    Google Scholar 

  19. G. Panati, H. Spohn and S. Teufel, Space-adiabatic perturbation theory, Adv. Theor. Math. Phys. 7 (2003).

    Google Scholar 

  20. G. Panati, H. Spohn and S. Teufel, Space-adiabatic perturbation theory in quantum dynamics, Phys. Rev. Lett. 88 (2002), 250405.

    Article  Google Scholar 

  21. G. Panati, H. Spohn and S. Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond, Commun. Math. Phys. 242 (2003), 547–578.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59 (1999), 14915–14925.

    Article  Google Scholar 

  23. S. Teufel, Adiabatic Perturbation Theory in Auantum Dynamics, Lecture Notes in Mathematics, Vol. 1821, Springer-Verlag, Berlin, Heidelberg, New York, 2003.

    Book  Google Scholar 

  24. D.J. Thouless, M. Kohomoto, M.P. Nightingale and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49 (1982), 405–408.

    Article  Google Scholar 

  25. J. Zak, Dynamics of electrons in solids in external fields, Phys. Rev. 168 (1968), 686–695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Teufel, S., Panati, G. (2004). Propagation of Wigner Functions for the Schrödinger Equation with a Perturbed Periodic Potential. In: Blanchard, P., Dell’Antonio, G. (eds) Multiscale Methods in Quantum Mechanics. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8202-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8202-6_17

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6488-0

  • Online ISBN: 978-0-8176-8202-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics