Skip to main content

Function Spaces Based on Wavelet Expansions

  • Chapter
Sampling, Wavelets, and Tomography

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 661 Accesses

Abstract

Several extensions of Besov spaces are studied. They take into account the distributions of wavelet coefficients at each scale and the correlations between the positions of the large wavelet coefficients. These new spaces allow us to formalize two new notions: the “contour-type” functions, which display the strongest possible correlations, and the “shuffled-type” functions, which display the weakest possible correlations. These notions depend neither on the particular wavelet basis chosen nor on an a priori statistical model. Several examples taken from image and signal processing illustrate these notions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Abramovich, T. Sapatinas, and B. Silverman, Wavelet thresholding via a Bayesian approachJ. Roy. Stat. Soc. Ser. BVol. 60 p. 725–749, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Arneodo, E. Bacry, and J.-F. Muzy, Random cascades on wavelet dyadic treesJ. Math. Phys.Vol. 39 n. 8 p. 4142–4164, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.-M. Aubry and S. Jaffard, Random wavelet seriesComm. Math. Phys.Vol. 227 p. 483–514, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian random processesRevista Math-ematica lberoamericana Vol. 13 N.lpp. 19–90, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Buccigrossi and E. Simoncelli, Image compression via joint statistical characterization in the wavelet domain, Preprint, 1997.

    Google Scholar 

  6. F. Chilla, J. Peinke, and B. Castaing, Multiplicative process in turbulent velocity statistics: A simplified analysisJ. Phys. II FranceVol. 6 p. 455–460, 1996.

    Article  Google Scholar 

  7. A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Tree approximation and encoding Preprint, 2000.

    Google Scholar 

  8. A. Cohen, I. Daubechies, and J.-C. Fauveau, Biorthogonal bases of compactly supported waveletsComm. Pure Appl. Math.V. 44 p. 485–560, 1992.

    Article  Google Scholar 

  9. A. Cohen and R. RyanWavelets and Multiscale Signal ProcessingChapman & Hall, New York, 1995.

    MATH  Google Scholar 

  10. I. Daubechies, Orthonormal bases of compactly supported waveletsComm. Pure and Appl. Math.Vol. 41 p. 909–996, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. DeVore, Nonlinear ApproximationActa Numericap. 1–99, 1998.

    Google Scholar 

  12. D. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, Wavelet shrinkage: Asymptopia?J. Roy. Stat. Soc. Ser. BVol. 57, no. 2, p. 301–369, 1995.

    MathSciNet  MATH  Google Scholar 

  13. Huang and D. Mumford, Statistics of natural images and models, Preprint.

    Google Scholar 

  14. S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functionsJ. Math. Phys.Vol. 39 n. 8 p. 4129–4141, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Jaffard, Beyond Besov spaces Part 1: Distributions of wavelet coefficients, Preprint, 2002.

    Google Scholar 

  16. S. Jaffard, Beyond Besov spaces Part 2: Oscillation spaces, Preprint, 2002.

    Google Scholar 

  17. S. Jaffard and Y. Meyer, On the pointwise regularity of functions in critical Besov spacesJ. Func. Anal.Vol. 175 p. 415–434, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Jaffard, Y. Meyer, and R. RyanWavelets: Tools for Science and TechnologySIAM, Philadelphia, PA, 2001.

    Book  Google Scholar 

  19. I. Johnstone and B. Silverman, Empirical Bayes approaches to mixture problems and wavelet regression, Preprint.

    Google Scholar 

  20. J.-P. Kahane and J. Peyriere, Sur certaines martingales de Benoit MandelbrotAdvances Math.22, 131–145, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  21. P.-G. Lemariè and Y. Meyer, Ondelettes et bases hilbertiennesRev. Mat. IberoamericanaVol. 1 p. 1–18,1986.

    Article  Google Scholar 

  22. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representationIEEE Trans. on Pattern Anal. Machine Intell.Vol. 11 p. 674–693, 1989.

    Article  MATH  Google Scholar 

  23. S. Mallat, AWavelet Tour of Signal ProcessingAcademic Press, New York, 1998.

    MATH  Google Scholar 

  24. B. MandelbrotFractals and Scaling in FinanceSpringer, Berlin, 1997.

    MATH  Google Scholar 

  25. Y. MeyerOndelettes et OpérateursHermann, Paris, 1990.

    Google Scholar 

  26. Y. Meyer, F. Sellan, and M. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motionJ. Four. Anal. App.Vol. 5 no. 5 p.465–494, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Müller and B. Vidakovic (Eds.), Bayesian inference in wavelet based modelsLect. Notes Stat.Vol. 141, Springer-Verlag, 1999.

    Book  MATH  Google Scholar 

  28. J. O’Neil and C. Meneveau, Spatial correlations in turbulence: Predictions from the multifractal formalism and comparison with experimentsJ. Phys. FluidsA 5, no. 1, 158–172, 1993.

    Google Scholar 

  29. S. Resnick, A. Gilbert, and W. Willinger, Wavelet analysis of conservative cascades, Preprint, Cornell University.

    Google Scholar 

  30. A. Said and W. A. Pearlman, An image multiresolution representation for lossless and lossy compressionIEEE Trans. Image Proc.5, no. 9 p. 1303–1310, 1996.

    Article  Google Scholar 

  31. J. Shapiro, Embedded image coding using zero-trees of wavelet coefficientsIEEE Trans. Image Proc31 p. 3445–3462, 1993.

    Google Scholar 

  32. E. Simoncelli, Bayesian denoising of visual images in the wavelet domainLect. Notes Stat.141, Springer p. 291–308, 1999.

    Article  Google Scholar 

  33. H. TriebelTheory of Function Spaces. IIBirkhäuser, Boston, MA, 1992.

    Book  MATH  Google Scholar 

  34. B. Vidakovic, A note on random densities via waveletsStat. Proba. Let.Vol. 26, p. 315–321,1996.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Willinger, M. Taqqu, and A. Erramili, A bibliographical guide to selfsimilar traffic and performance modeling for modern high-speed networks, Stochastic Networks, Theory and Applications, p. 339–366, F. Kelly, S. Zachary and I. Zieldins, (eds.), Clarendon Press, Oxford, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jaffard, S. (2004). Function Spaces Based on Wavelet Expansions. In: Benedetto, J.J., Zayed, A.I. (eds) Sampling, Wavelets, and Tomography. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8212-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8212-5_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6495-8

  • Online ISBN: 978-0-8176-8212-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics