Skip to main content

Numerical Experiments for Mammary Adenocarcinoma Cell Progression

  • Chapter
Integral Methods in Science and Engineering
  • 1914 Accesses

Abstract

We have analyzed cell culture and animal and mathematical models for the investigation of mammary carcinoma progression. The development and characterization of a progressive series of C3(1)/Tag mammary carcinoma cell lines have been described by means of integro-differential equations of Boltzmann type. The numerical approximations to the solutions of the proposed mathematical model have shown a good agreement with the laboratory data of the tumor growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arlotti, L., Bellomo, N., De Angelis, E., Lachowicz, M.: Generalized Kinetic Models in Applied Sciences, Series on Advances in Mathematics for Applied Sciences, 64, World Scientific Publishing Co., Inc., River Edge, NJ, xii+199 (2003).

    Google Scholar 

  2. Arpino, G., Bardou, V.J., Clark, G.M., Elledge, R.M.: Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Research, 6, 149–156 (2004).

    Article  Google Scholar 

  3. Bellomo, N., Forni, G.: Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling, 20, 107–122 (1994).

    Article  MATH  Google Scholar 

  4. Bellomo, N., Bellouquid, A.: On the mathematical kinetic theory of active particles with discrete states. The derivation of macroscopic equations. Math. Comput. Modelling, 44, 397–404 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellomo, N., Sleeman, B.: Preface in: Multiscale Cancer Modelling. Comput. Math. Meth. Med., (special issue) 20, 67–70 (2006).

    Article  MathSciNet  Google Scholar 

  6. Bellomo, N., Maini, P.: Preface in: Cancer Modelling (II). Math. Models Methods Appl. Sci., (special issue) 16, n. 7b, iii–vii (2006).

    MathSciNet  Google Scholar 

  7. Bellomo, N.: Modelling Complex Living Systems, Birkhäuser, Boston (2007).

    Google Scholar 

  8. Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci., 18, 593–646 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews, 5, 183–206 (2008).

    Article  Google Scholar 

  10. Bellouquid, A., Delitala, M.: Modelling Complex Biological Systems – A Kinetic Theory Approach, Birkhäuser, Boston (2006).

    Google Scholar 

  11. Breast Cancer Facts & Figures 2009–2010. American Cancer Society, Inc., Atlanta.

    Google Scholar 

  12. Calvo, A., Xiao, N., Kang, J., Best, C.J.M., Leiva, I., Emmert-Buck, M.R., Jorcyk, C., Green, J.E.: Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Research, 62, 5325–5335 (2002).

    Google Scholar 

  13. Cox, L.A., Chen, G., Lee, E.Y.: Tumor suppressor genes and their roles in breast cancer. Breast Cancer Research Treat, 32, 19–38 (1994).

    Article  Google Scholar 

  14. De Angelis, E., Lodz, B.: On the kinetic theory for active particles: A model for tumor-immune system competition. Math. Comput. Modelling, 47, 196–209 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. De Lillo, S., Salvatori, M.C., Bellomo, N.: Mathematical tools of the kinetic theory of active particles with some reasoning on the modelling progression and heterogeneity. Math. Comput. Modelling, 45, 564–578 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. Drucis, K., Kolev, M., Majda, W., Zubik-Kowal, B.: Nonlinear modeling with mammographic evidence of carcinoma, Nonlinear Anal. Real World Appl., 11, 4326–4334 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Dyson, N., Buchkovich, K., Whyte, P., Harlow, E.: The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell, 58, 249–255 (1989).

    Article  Google Scholar 

  18. Green, J.E., Shibata, M., Yoshidome, K., Liu, M., Jorcyk, C.L., Anver, M.R., Wigginton, J.M., Wiltrout, R., Shibata, E., Kaczmarczyk, S., Wang, W., Liu, Z., Calvo, A., Couldrey, C.: The C3(1)/SV40 T-antigen transgenic mouse model of mammary carncer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene, 19, 1020–1027 (2000).

    Article  Google Scholar 

  19. Holzer, R.G., MacDougall, C., Cortright, G., Atwood, K., Green, J.E., Jorcyk, C.L.: Development and characterization of a progressive series of mammary adenocarcinoma cell lines derived from the C3(1)/SV40 large T-antigen transgenic mouse model. Breast Cancer Research Treat, 77, 65–76 (2003).

    Article  Google Scholar 

  20. Jackiewicz, Z., Jorcyk, C.L., Kolev, M., Zubik-Kowal, B.: Correlation between animal and mathematical models for prostate cancer progression. Comput. Math. Methods Med., 10, 241–252 (2009).

    Article  MathSciNet  Google Scholar 

  21. Jäger, E., Segel, L.: On the distribution of dominance in a population of interacting anonymous organisms, SIAM J. Appl. Math., 52, 1442–1468 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. Jorcyk, C.L., Liu, M.L., Shibata, M.A., Maroulakou, I.G., Komschlies, K.L., McPhaul, M.J., Reseau, J.H., Green, J.E.: Development and characterization of a mouse prostate adenocarcinoma cell line: ductal formation determined by extracellular matrix. Prostate, 34, 10–22 (1998).

    Article  Google Scholar 

  23. Kolev, M.: A mathematical model of cellular immune response to leukemia. Math. Comput. Modelling, 41, 1071–1081 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuby, J.: Immunology, 3rd edition, W.H. Freeman, New York (1997).

    Google Scholar 

  25. Lydyard, P.M., Whelan, A., Fanger, M.W.: Instant Notes in Immunology, BIOS Scientific Publishers Ltd., Oxford (2000).

    Google Scholar 

  26. Maroulakou, I.G., Anver, M., Garrett, L., Green, J.E.: Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion protein. Proc. Natl. Acad. Sci. USA, 91, 11236–11240 (1994).

    Article  Google Scholar 

  27. Mietz, J.A., Unger, T., Huibregtse, J.M., Howly, P.M.: The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T antigen and by HPV-16 E6 oncoprotein. EMBO J., 11, 5013–5020 (1992).

    Google Scholar 

  28. Osborne, R.J., Merlo, G.R., Mitsudomi, T., Venesio, T., Liscia, D.S., Cappa, A.P., Chiba, I., Takahashi, T., Nau, M.M., Callahan, R., et al.: Mutations in the p53 gene in primary human breast cancers. Cancer Research, 51, 6194–6198 (1991).

    Google Scholar 

  29. Parker, M.G.R., White, H., Hurst, M., Needham, M., Tilly, R.: Prostatic steroid-binding protein: isolation and characterization of C3 genes. J. Biol. Chem., 258, 12–15 (1983).

    Google Scholar 

  30. Schmid, M.C., Varner, J.A.: Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. Journal of Oncology, 1–10 (2010).

    Google Scholar 

  31. Soares, C.R., Shibata, M.A., Green, J.E., Jorcyk, C.L.: Development of PIN and prostate adenocarcinoma cell lines: a model system for multistage tumor progression. Neoplasia, 4, 112–20 (2002).

    Article  Google Scholar 

  32. Yoshidome, K., Shibata, M., Maroulakou, I.G., Liu, M., Jorcyk, C.L., Gold, L.G., Welch, V.N., Green, J.E.: Genetic alterations in the development of mammary and prostate cancer in the C3(1)/Tag transgenic mouse model. Int. J. Oncol., 12, 449–453 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zubik-Kowal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jorcyk, C.L., Kolev, M., Zubik-Kowal, B. (2011). Numerical Experiments for Mammary Adenocarcinoma Cell Progression. In: Constanda, C., Harris, P. (eds) Integral Methods in Science and Engineering. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8238-5_20

Download citation

Publish with us

Policies and ethics